CORNING

Specialty Optical Fibers

Valery Kozlov

RFOC 12-14 October, 2011

Corning Incorporated

Founded: 1851

Headquarters:

Corning, New York

Employees:

~ 26,000 worldwide

2010 Sales: \$6.6 Billion

Fortune 500 Rank (2010): 391

- Corning is the world leader in specialty glass and ceramics
- We succeed through sustained investment in R&D, 160 years of materials science and process engineering knowledge

Sullivan Park Connected Globally in Europe, Asia and the U.S. West Coast

Corning European Technology Center Fontainebleau, France

Silicon Valley, California

Specialty Fibers

CORNING

Taipei, Taiwan

A Culture of Innovation

40 years of optical fiber innovation

 In 1970, three Corning scientists reported the 1st optical fiber with loss below 20 dB/km which demonstrated the feasibility of fiber optics for telecom applications.

Then the attenuation in; Bt = 10 log 3557 = 17 db/bm Whaper 0! 29 mitro Must remeasure this to check! haft laser and electronics running laring lumb, signal is holden constant @ 158 mm. None is definitely lower. Mayinged signet al found & had to decrease the HV to 850. HV = 850, RC = 100, RL = 100 K. 2. S = 92,2 nov Sry = 158 input in fluid. S = 48.7 nov Sry = 159 (lace is up alift) Broke fiber : asiting till it cares down again: 5 = 47.5 5ry = 158 AL = 43 turn @ 0.653 = 28.1 meters From these numbers : Bt = 10 log 42.2 = 18.2 db/hm no signal change Fiber limeter is 9,2 mil. Mode putters for it are on page 17. No was 0.49 mil. Mode putters for it are on For congerison the previous 20 define quiete hal a volue of 0.36 with No = 0.47.000. The care dianter is 3.7 µm. This put to a 1.570 TiO2 dogs in the Othe. The U value can the be calculated for 6328: $\mathcal{U} = \frac{\mathcal{T}(3.7)}{0.6328} \left[m_1^{(6318)} - m_1^{(6318)} \right]^{k} = \frac{\mathcal{T}(3.7)}{0.6328} \left[(1.469)^{2} - (1.457)^{2} \right]^{k}$ RESTRICTED = 1.83 See Protective Order In

Outside Vapor Deposition (OVD) – method of choice at Corning

- Invented, developed, and used by Corning
- Consistency for fiber profile and geometry

Specialty Fibers

CORNING

Higher process efficiencies; scalable to large blanks

Typical OVD fiber making process

• <u>OVD</u> 100's to 1000's of kilometers total "Sister" Fiber with <u>Identical Composition per Core</u> <u>Blank</u> delivers greater lot to lot consistency

• <u>MCVD/PCVD</u> 1 to 1 core usage gives greater lot to lot variation.

7

Corning market segments

Display Technology	Telecom	Environmental Technologies	Life Sciences	Specialty Materials	Other Products & Services
 LCD Glass Substrates Glass Substrates for OLED and LTPS-LCD 	 Optical Fiber & Cable Hardware & Equipment Fiber optic connectivity products 	 Emissions Control Products Light-duty gasoline vehicles Light-duty and heavy-duty on-road diesel vehicles Heavy-duty non- road diesel vehicles Stationary 	 Cell Culture & Bioprocess Assay & High- Throughput Screening Genomics & Proteomics General Laboratory Products 	 Corning[®] Gorilla[®] Glass Display Optics & Components Optical Materials Semiconductor materials Specialty fiber Polarcor[™] Optics Aerospace and Defense Ophthalmic 	 Emerging Display Technology Drug Discovery Technology New Business Development Equity Companies Cormetech, Inc. Dow Corning Corp. Eurokera, S.N.C. Samsung Corning Precision Materials Co., LTD (SCP)

EDFA-module and component fibers

- We believe the use of Corning fibers enables better EDFA manufacturing yields which lowers our customers costs
 - Photonic Fiber
 - PANDA PM Fiber
 - High Index Fiber

CORNING

– Erbium Doped Fiber

Specialty Fibers

Corning Specialty Fiber Group

- Develops and manufactures 'low volume' fibers for niche applications
- Major Fiber Types:
 - High Index
 - Erbium Doped
 - Elevated Temperature
 - Polarization Maintaining
 - Polymer Clad Silica
- Capabilities:
 - Custom Glasses
 - Dopants, Profile, Geometry
 - Custom Coatings
 - Hermetic, Materials, Geometry

10

Corning specialty fibers

Corning specialty fiber coatings for harsh environment applications

Corning elevated temperature specialty fibers

- Elevated temperature optical fibers
 - Mid temperature acrylate coating: single or dual coat (coating diameter of 200 or 245 micron)
 - SM-MT, SMH-MT, MM-MT, MMH-MT
 - Polyimide coating (coating diameter of 155 micron)
 - SM-HT, SMH-HT, MM-HT, MMH-HT
- <u>ClearCurve® optical fiber family glass design</u>
 - Bend insensitive single-mode fibers
 - SMBI-5-MT, SMBI-7.5-MT, SMBI-10-MT
 - Same with Hermetic coating
 - Bend insensitive multimode fibers (50/125 μm, NA=0.20, GI)
 - MMBI-MT, MMBIH-MT

SM-MT fiber coating weight change: aging at 180C

CORNING Specialty Fibers

SM-MT fiber attenuation: aging at 150C, 165C, and 180C (manual test, in air)

CORNING

SM-MT fiber online attenuation test: aging at 150C

CORNING **Specialty Fibers**

SM-MT fiber strength: aging at 150C and 165C

CORNING

SM-MT attn vs. temperature cycles -60C to +177C

CORNING Specialty Fibers

SM-MT fiber attenuation test: aging at 180C and 200C

SM-HT fiber attenuation: aging at 300°C

CORNING Specialty Fibers

SM-HT fiber strength: aging at 285C, 300C, and 315C

Carbon/polyimide coated fibers

• Hermetic coating:

- Amorphous carbon layer, 50nm thickness
- Hydrogen diffusion barrier
- Corning's proprietary deposition technique
- Applications:
 - Oil/Gas industry
 - Sensing
 - Aerospace/Defense

Carbon hermetic coating stability test for MMH-HT fiber sample at 200C and 400psi hydrogen pressure

Carbon coating permeation time temperature dependence (160C – 200C)

CORNING SI

MMH-HT fiber spectral attenuation: hydrogen aging at 200C

Corning bend insensitive fibers

Tight Bends

Staples

Cable Tension

Corning[®] ClearCurve[®] single-mode fiber portfolio

Product	Application	ITU-T	Radius	Corning Spec
ClearCurve [®] ZBL SMF	Virtually no bend-loss Very low loss in extreme (5mm) bend	Exceeds G.657. A3*/B3	5 mm	< 0.10 dB/turn
 Ultra low bend loss 	 environments Enables smaller components 		7.5 mm	< 0.05 dB/turn
ClearCurve[®] LBL SMF – Low bend loss	 Appropriate for a broader range of applications where some level of loss is acceptable 	Exceeds G.657. A2/B2	7.5 mm	< 0.4 dB/turn
ClearCurve [®] XB SMF – Enhanced bend capability	 Improved performance vs. standard single-mode fiber Enables a broader range of design options and deployment flexibility 	Exceeds G.657. A1	10 mm	< 0.50 dB/turn

Corning elevated temperature specialty fibers

- Elevated temperature optical fibers
 - Mid temperature acrylate coating: single or dual coat (coating diameter of 200 or 245 micron)
 - SM-MT, SMH-MT, MM-MT, MMH-MT
 - Polyimide coating (coating diameter of 155 micron)
 - SM-HT, SMH-HT, MM-HT, MMH-HT
- <u>ClearCurve® optical fiber family glass design</u>
 - Bend insensitive single-mode fibers (coating diameter of 200 or 245 micron)
 - SMBI-5-MT, SMBI-7.5-MT, SMBI-10-MT
 - Same with Hermetic coating
 - Bend insensitive multimode fibers (50/125 μm, NA=0.20, GI)
 - MMBI-MT, MMBIH-MT

Bend loss: SM-MT vs. SMBI-5-MT

CORNING Specialty Fibers

Bend insensitive multimode fibers

- Up to 10x better bend performance compared to standard 50 µm MMF
- Macrobend attn spec: ≤ 0.2dB for bend radius 7.5mm and 2 fiber turns (850nm)
- Bandwidth OM2/OM3/OM4 capability
- May be spliced/connectorized to conventional 50/125 fibers with commercially available equipment

Online bend sensitivity test for SMBI-5-MT fiber at 150C (1 fiber turn over 10mm mandrel)

CORNING Specialty Fibers

Bend sensitivity test for SMBI-5-MT fiber after aging at 150C

CORNING Specialty Fibers

Hydrogen resistant SM-HT fiber vs. SM-HT fiber

Hydrogen resistant MM-HT fiber vs. MM-HT fiber

PM photonic band gap fiber (PBGF)

• Air core guiding, pure silica PM fiber

Functionality/Value:

- World's largest birefringence, δn = 2.5x10⁻²
- Ultimate radiation resistance
- Low non-linearities (1000x lower than SMF)
- Exceptionally low macro-bend loss (100x lower)

Corning single polarization fiber

Elliptical core/Dual air hole design

Air-assisted optical fibers: from millimeter to nanometer scale

nanoStructures[™] technology

Optical fibers with nanoStructures™ cladding

Corning Specialty Fiber's capabilities

• Glass

- Capability to tune profile and composition to meet customer's needs
 - Profiles: single mode, graded index multimode, bend insensitive, SBS engineered, high power delivery, polarization maintaining, double clad, photonic crystal....
 - Composition: Ge, Al, B, F, P, Rare Earths, Ti...
- Custom diameters from 50 to beyond 1000 μm

Coating

- Capability for multiple coating systems
 - Acrylates, Polyimide, Optical Polymers
 - Custom diameters from 100 to beyond 1000 μm
- Hermetic Coating can be added to any fiber product

CORNING