КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. А. Н. ТУПОЛЕВА – КАИ (КНИТУ-КАИ)

ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ (ПГУТИ) (КАЗАНСКИЙ ФИЛИАЛ)

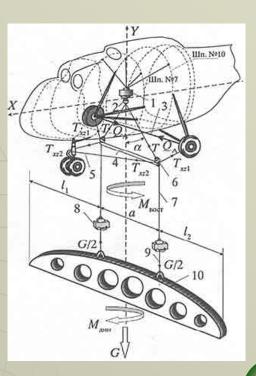
Алюшина С.Г., Денисенко П.Е., Морозов О.Г., Садыков И.Р., Садеев Т.С.

ВОЛОКОННЫЕ РЕШЕТКИ БРЭГГА С ФАЗИРОВАННОЙ СТРУКТУРОЙ В ИНФОРМАЦИОННЫХ КАНАЛАХ ВОСП-СР

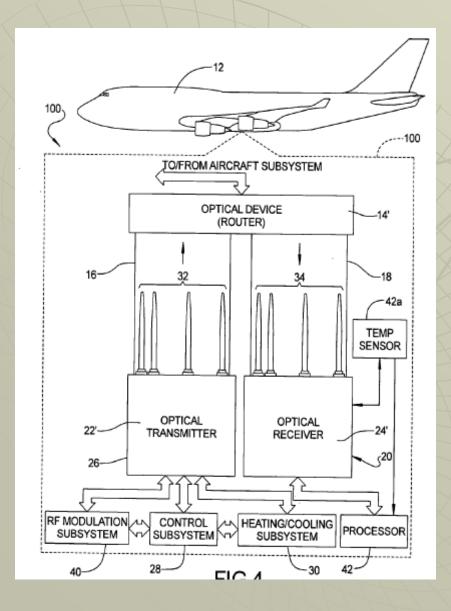
ВСЕРОССИЙСКАЯ КОНФЕРЕНЦИЯ ПО ВОЛОКОННОЙ ОПТИКЕ - 2011 ВОЛОКОННО-ОПТИЧЕСКИЕ СИСТЕМЫ СВЯЗИ - III

ПЕРМЬ 2011

СОДЕРЖАНИЕ ПРЕЗЕНТАЦИИ

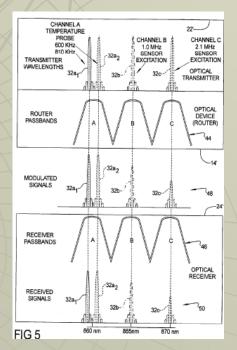

- 1. Постановка задач
- 2. Пути решения задач
- 3. Решетки Брэгга с фазовым сдвигом
- 4. Решетки с треугольным спектром
- 5. Структурированные решетки
- 6. Решетки, структурированные по правилу Канторова множества
- 7. Мониторинг волоконных решеток
- в. Двухчастотное зондирование с измерением фазы
- 9. Многочастотное зондирование с исключением измерения фазы
- 10. Многочастотный генератор на модуляторе Маха-Цендера
- 11. Научно-техническая база для проведения дальнейших исследований
- 12. Заключение
- 13. Благодарности

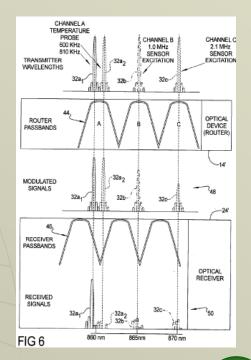
Постановка задач


- 1. Разработка бортовой волоконно-оптической системы связи и ее интерфейса для вертолетов класса МИ-8 и других
- 2. Все бортовые радиоэлектронные средства вертолета объединены в локальную сеть волоконно-оптическим кабелем
- 3. Все сенсорные системы и датчики по максимум должны быть переведены на волоконно-оптические технологии

Постановка задач

- (19) United States
- (12) Patent Application Publication (10) Pub. No.: US 2007/0036551 A1 Weaver


 - (43) Pub. Date:


Feb. 15, 2007

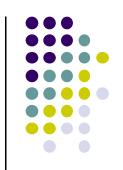
(54) THERMAL DRIFT COMPENSATION SYSTEM AND METHOD FOR OPTICAL NETWORKS

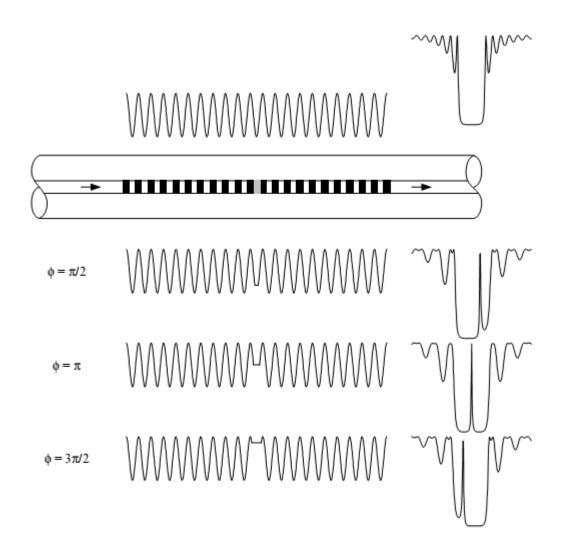
ABSTRACT

A system and method for detecting and compensating for thermal drift in an optical network in a manner that enables

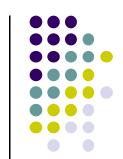
Постановка задач

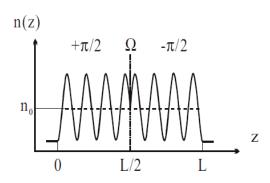
Формирование стабильных информационных каналов ВОСП-СР требует прецизионного контроля температурных дрейфов их центральной длины волны или температурных дрейфов источников излучения (иногда необходим контроль параметров других физических полей), создания сложных систем управления и регулирования параметров всей системы в целом, что достаточно технически трудно или экономически затратно реализуемо в условиях применения широкополосных или перестраиваемых источников излучения в подсистемах мониторинга.


Пути решения задач


- 1. Синтез специальных многооконных волоконных решеток Брэгга со структурированным фазовым сдвигом (ВРБСФС), характеризующихся наличием узких спектральных особенностей для обеспечения возможности мониторинга с высоким разрешением, а также возможностью создания встроенных систем локализации информационных участков спектра с целью повышения стабильности их положения при воздействии внутренних и внешних возмущающих факторов.
- 2. Зондирование и мониторинг информационных каналов на ВРБСФС может быть обеспечен использованием дискретного по спектру двух- или многочастотного зондирующего излучения и его управляемого взаимодействия с комплексной структурой спектра отражения/пропускания решетки, с возможностью регистрации и компенсации как линейных, так и нелинейных возмущающих факторов и эффектов.

Пути решения задач


• Синтез специальных многооконных ВРБСФС


Решетка Брэгга с фазовым сдвигом

Решетка Брэгга с фазовым сдвигом

$$n(z) = \begin{cases} n_0 + \Delta n \cos\left(\frac{2\pi}{\Lambda}z + \frac{\pi}{2}\right) &, \quad z < 0 \\ n_0 + \Delta n \cos\left(\frac{2\pi}{\Lambda}z - \frac{\pi}{2}\right) &, \quad z \ge 0 \end{cases}$$

$$\Delta\Lambda(z) = \Delta\Lambda_{\text{mex}} \sin\left(\frac{\pi}{l}z\right)$$
 $\phi = 4\pi \left(\frac{\Delta\Lambda_{\text{mex}}}{(\Lambda_0\pi + 2\Delta\Lambda_{\text{mex}})\Lambda_0}\right)l.$

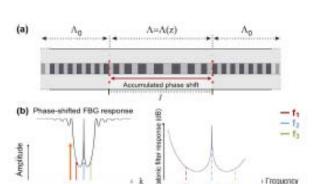


Fig. 1. (a) Phase-shifted grating profile. (b) Filter operating principle: grating response with indication of three SSB modulated signals at frequencies f1, f2, and f3; filter response after photodetection.

HAR PROTONICS TECHNOLOGY LETTERS VOL. 22 NO. 19 OCTOBER 1 2010

Tunable Photonic Microwave Filter With Single Bandpass Based on a Phase-Shifted Fiber Bragg Grating

Jesús Palací, Pere Pérez-Millán, Guillermo Eduardo Villanueva, José L. Cruz, Miguel V. Andrés, Javier Martí, and

$$\phi_{\text{shift}} = \frac{2\pi nL}{\lambda}$$

$$\Delta n = \frac{\lambda}{2L}$$

$$\Delta n = \frac{\lambda}{2L}$$

$$n(z) = n_0 + \Delta n_{ac}(z) \cos \left[\frac{2\pi z}{\Lambda} + \varphi(z) \right] + \Delta n_{dc}(z)$$

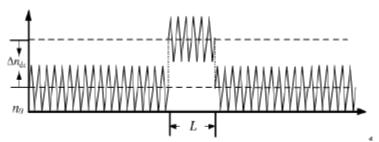


Fig.1 principle of Dc phase shift

A Novel Method of Inducing Phase Shifts in Fiber Bragg Grating Without Using Phase Mask

Решетки Брэгга с треугольным спектром

$$f(z)e^{j\theta} = \int_{-\infty}^{\infty} F_{\beta}e^{j\beta z}dz,$$

$$\Delta n(z) = \overline{\Delta n} f_T(z) \exp\left[j \left(2\pi z/\Lambda + \theta\right)\right] \tag{2}$$

where $\overline{\Delta n}$ is the effective index change, $f_T(z) = \operatorname{Sinc} (2\pi z/L_T)^2$ is the index modulation envelope, L_T is the first zero-crossing bandwidth for the pulse, Λ is the Bragg period,

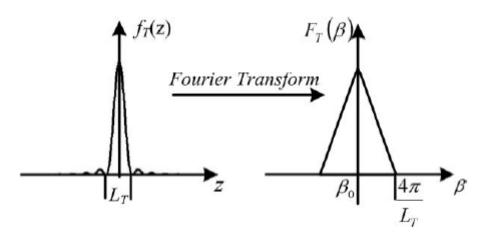
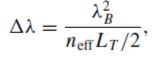
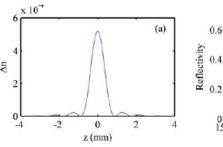
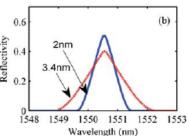
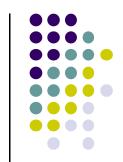
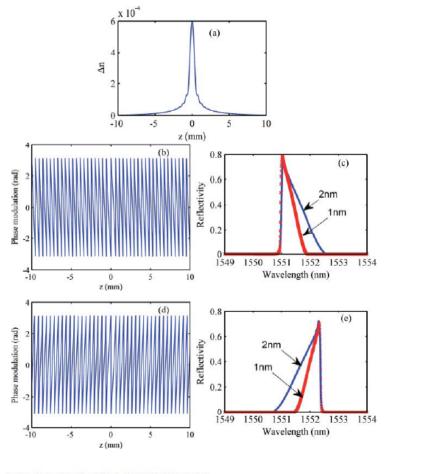
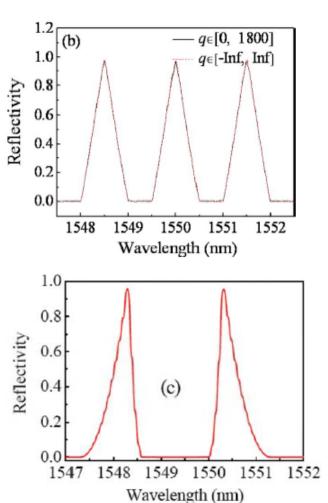




Fig. 1 Schematic of the FT for the triangle shape.


Fig. 4 (a) The index modulation profile and (b) the corresponding (blue solid line) and additional (red dotted line) triangle spectrum.

Optical Engineering 50(5), 054003 (May 2011)

Решетки Брэгга с треугольным спектром

Optical Engineering 50(5), 054003 (May 2011)

Design of fiber Bragg gratings with arbitrary reflective spectrum

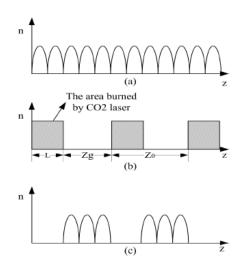
Структурированные решетки Брэгга

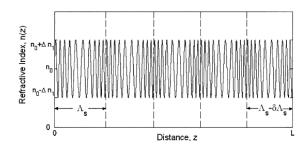
IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 8, AUGUST 2003

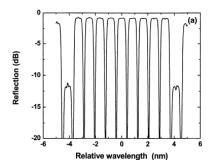
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 9, SEPTEMBER 2003

Purely Phase-Sampled Fiber Bragg Gratings for Broad-Band Dispersion and Dispersion Slope Compensation

Hojoon Lee, Member, IEEE, and Govind P. Agrawal, Fellow, IEEE


Phased-Only Sampled Fiber Bragg Gratings for High-Channel-Count Chromatic Dispersion Compensation


Hongpu Li, Member, OSA, Yunlong Sheng, Member, OSA, Yao Li, Member, IEEE, and Joshua E. Rothenberg, Member, IEEE, Fellow, OSA


$$n(z) = n_0 + \text{Re}\left\{\left(\frac{\Delta n(z)}{2}\right) \exp\left[i\left(\frac{2\pi z}{\Lambda} + \phi_g(z)\right)\right] s(z)\right\}$$

$$s(z) = \sum_{-\infty}^{\infty} S_m \exp\left(\frac{i2m\pi z}{P}\right)$$

$$\begin{split} \delta n(z) &= \sum_{m=-\infty}^{\infty} \, S_m \, \text{Re} \left\{ \left(\frac{\Delta n(z)}{2} \right) \right. \\ &\times \left. \exp \left[i \left(\frac{2\pi mz}{P} + \phi_m + \frac{2\pi z}{\Lambda} + \phi_g(z) \right) \right] \right\} \end{split}$$

Канторово множество

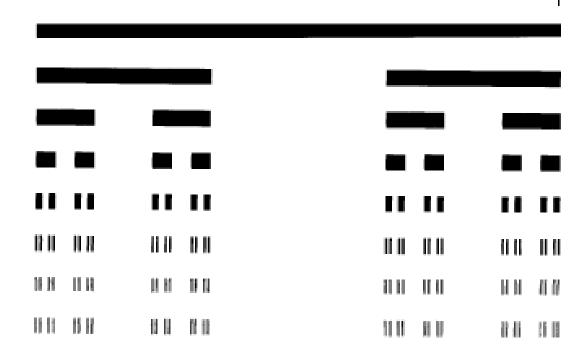
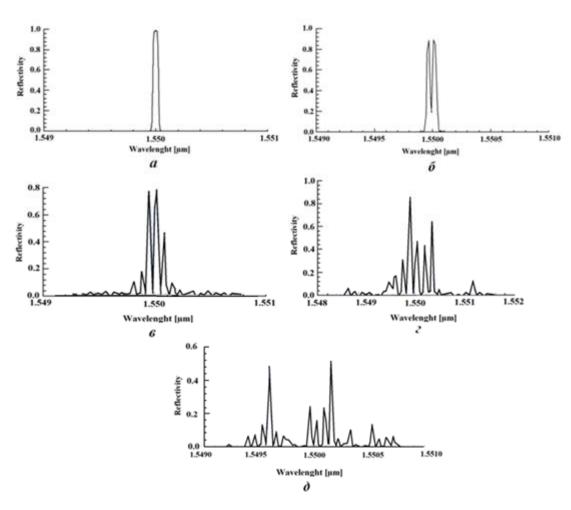
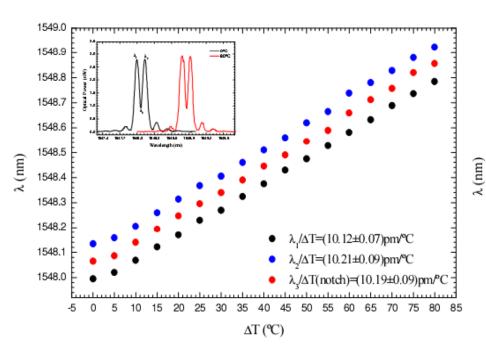
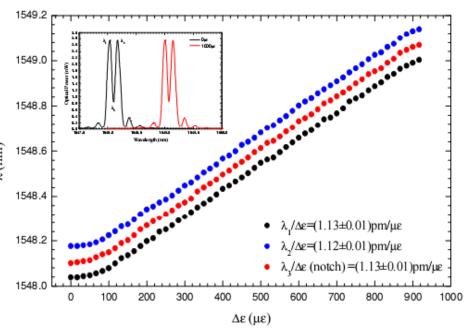


Рис. 120 и 121. КАНТОРОВЫ ТРОИЧНЫЕ ГРЕБЕНЬ И БРИКЕТ (РАЗМЕРНОСТЬ ГОРИЗОНТАЛЬНОГО СЕЧЕНИЯ $D=\ln 2/\ln 3=0.6309$). КОЛЬЦА САТУРНА.

Решетка, структурированная по Канторову правилу

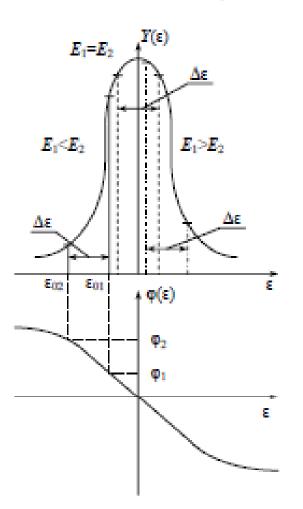



Рис. 7. ВРБ, структурированные по принципу канторова множества, a – решетка 1го порядка; b – 2го порядка; b – 3го порядка; d – 5го порядка


Пути решения задачи

• Зондирование и мониторинг информационных каналов на ВРБСФС

Оценка стабильности характеристик от внешних воздействий



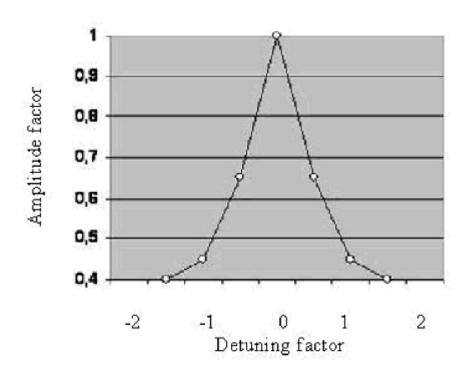
Принципы измерения (двухчастотное зондирование)

$$m = \frac{\sqrt{1 + (\epsilon_0 + \Delta \epsilon / 2)^2}}{\sqrt{1 + (\epsilon_0 - \Delta \epsilon / 2)^2}}.$$

$$\varphi_{\text{con}} = -\arctan(\epsilon^+) +$$

$$+\arctan\left[\frac{\sin[-\arctan(\epsilon^+) + \arctan(\epsilon^+) + \Omega r]}{\left[1/\sqrt{1 + (\epsilon^+)^2}\right]/\left[1/\sqrt{1 - (\epsilon^-)^2}\right] + \cos[-\arctan(\epsilon^+) + \arctan(\epsilon^+) + \Omega r]}\right]$$

$$\varphi_{\text{con}} = -\arctan(\epsilon^-) +$$


$$+\arctan\left[\frac{\sin[-\arctan(\epsilon^+) + \arctan(\epsilon^-) + \Omega r]}{\left[1/\sqrt{1 + (\epsilon^+)^2}\right]/\left[1/\sqrt{1 - (\epsilon^-)^2}\right] + \cos[-\arctan(\epsilon^+) + \Omega r]}\right]$$

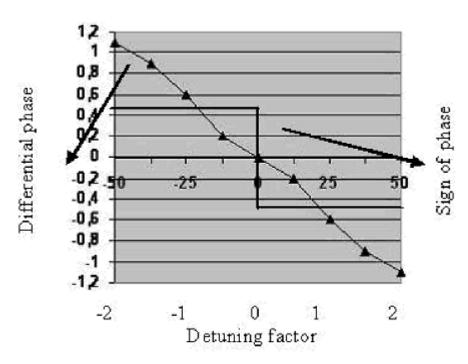
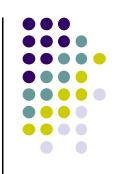
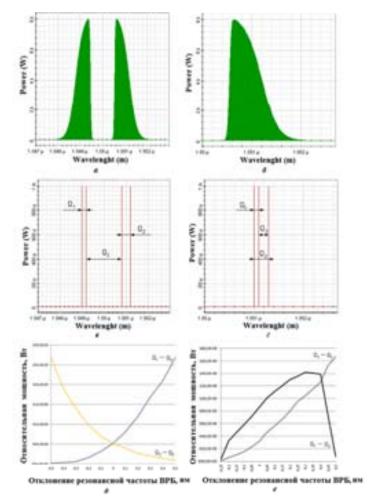
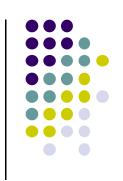
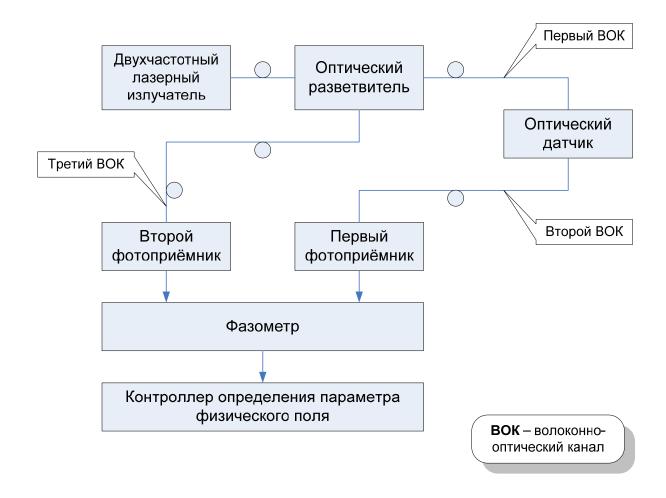

$$\begin{split} U_{\text{cospect}}(t) &= \sqrt{E_{\text{losel}}^2 + E_{\text{losel}}^2 + 2E_{\text{losel}}E_{\text{losel}}\cos\left[\left(\phi_{\text{losel}} - \phi_{\text{losel}}\right) + \Omega t\right]} \cdot \cos\left[\left(\phi_{\text{losel}} - \phi_{\text{losel}}\right) + \Omega t\right] \\ &\cdot \cos\left(\cos_{w}t + \left[\phi_{1} + \arctan\left[\frac{\sin\left[\left(\phi_{\text{losel}} - \phi_{\text{losel}}\right) + \Omega t\right]\right]}{E_{\text{losel}} / E_{\text{losel}} + \cos\left[\left(\phi_{\text{losel}} - \phi_{\text{losel}}\right) + \Omega t\right]\right]}\right] \end{split}$$

Fig. 2. Circuit amplitude-frequency characteristic with two-frequency input signal


Принципы измерения (двухчастотное зондирование)

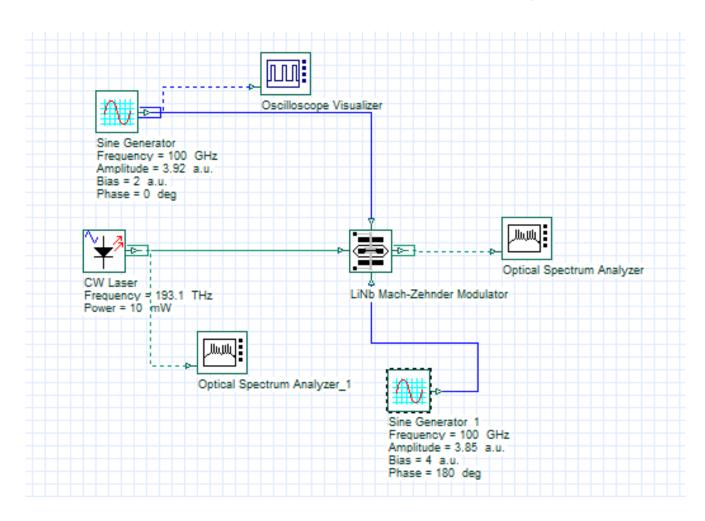
Устройство для измерения параметров физических полей (патент)

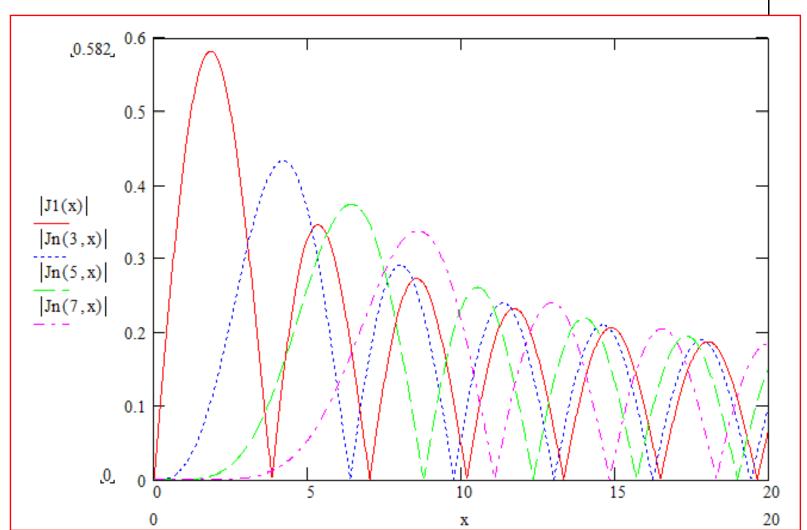



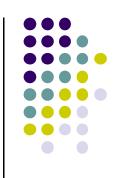

Рис. 6. Можеторият телекомнужевационного (а) и измерительного (б) каналов с прораздел четыреживстотного (в) и треживстотного (г) измерительных сигналов с выходными характеристиками для каждого канала (5,6).

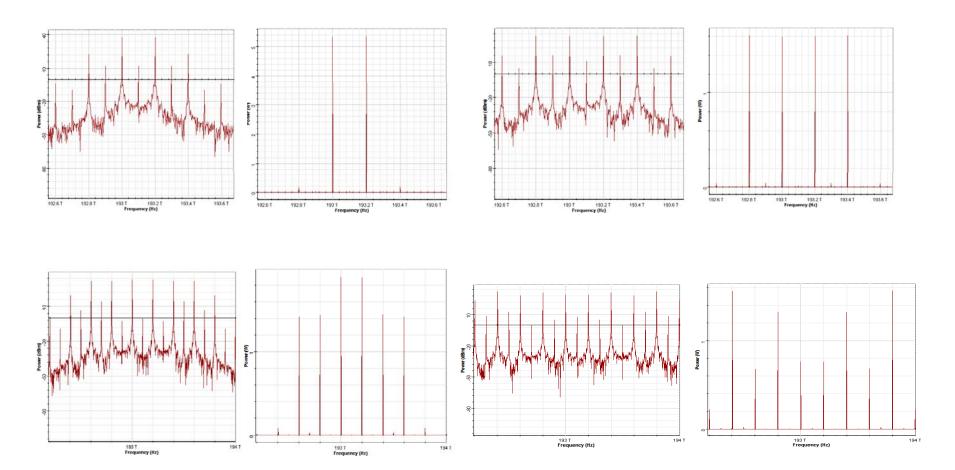
Принцип измерения двухчастотный:

- 1. Первая пара сигналов измерительная (внутри контура пропускаяния ВРБ с ФД);
 - 2. Вторая пара сигналов мониторинга (на склонах ВРБ);
- 3. Разделение информации по разным промежуточным частотам (измерительная десятки- сотни МГц, мониторинг единицы-десятки ГГп)


Устройство для измерения параметров физических полей (патент)




Генератор многочастотного излучения


Принципы генерирования равных по амплитуде и противоположных по фазе сигналов (точки равных амплитуд ФБ)

Примеры сгенерированных спектров

Пути решения задачи

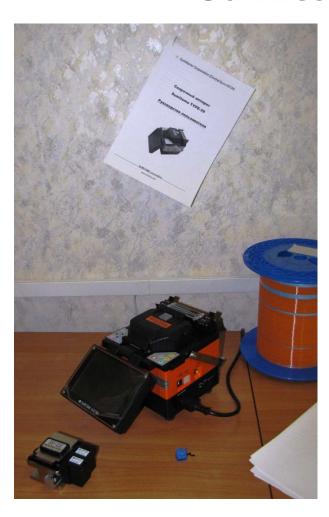
• Лаборатория мониторинга волоконно-оптических систем связи

Состав лаборатории

- 1. Лаборатория исследования перспективных волоконно-оптических телекоммуникационных компонентов и волоконно-оптических датчиков, волоконных лазеров и усилителей
- 2. Лаборатория записи волоконных решеток Брэгга.

Общий вид лаборатории

Анализатор оптического спектра FTB-500



Назначение:

• контроль и измерение параметров при разработке ВОД

- Всесторонняя оценка волокон: широко известный в отрасли рефлектометр, в комбинации с наиболее продвинутыми анализаторами дисперсии
- Единственный в отрасли: анализ распределения ПМД
- Готов для работы с технологиями 10G, 40G и 100G
- Наиболее компактные и мощные анализаторы Ethernet, SONET/SDH, OTN и Fibre Channel

Сварочный аппарат оптических волокон Sumitomo TYPE-39

Назначение:

• обеспечение технологического процесса разработки ВОД

- Две высокоскоростные печи для термоусадки КДЗС
- ТFT цветной ЖК-дисплей 5.6" с 320 кратным увеличение
- 200 полных циклов сварок/усадок от одного аккумулятора
- Автостарт для начала сварки и усадки КДЗС

Оптический рефлектометр МТР 9000В

Назначение:

 контроль параметров затухания и дисперсии в технологическом процессе

- программное обеспечение, разработанное на базе ОС LINUX
- функция TouchScreen
- встроенный источник видимого излучения для обнаружения повреждений оптического волокна
- возможность хранения более 500 рефлектограмм в памяти прибора

Детектор оптического излучения большой мощности ORION/TH

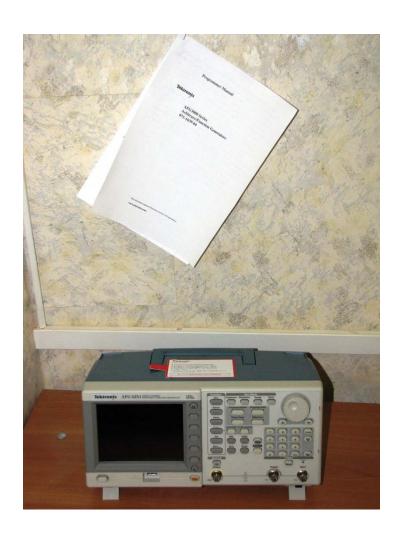


Назначение:

 измерение мощности излучения лазеров для записи ВОД на основе ВРБ

- Измерение энергии одиночных импульсов с помощью термоэлектрических датчиков
- Регистрация мощности и энергии с помощью графического индикатора, статистика
- Усреднение мощности
- Подавление электромагнитных помех
- Полный интерфейс LabVIEW

Цифровой осциллограф Wave Runner 104Xi



Назначение:

• контроль и измерение параметров при разработке ВОД

- 4 канала
- Частоты дискретизации 5 ГГц (10 ГГц при объединении каналов)
- Большая скорость обновления экрана технология WaveStream
- Режим поиска аномалий в длинной записи по 18 условиям - WaveScanTM
- Опции синхронизации и декодирования сигналов шин CAN, I2C, SPI
- Интеллектуальная система синхронизации
- Возможность интеграции с пакетами MathCad, MatLab, Excel

Генератор сигналов произвольной формы AFG 3251

- синусоида 1mHz 240MHz
- другие стандартные сигналы: синус, прямоугольный меандр, импульс, пила, треугольный, Sin(x)/x, экспоненциальный подъем/спад, гаусс, лоренц, гиперсинус, постоянный сигнал, шум
- режим генератора импульсов с отдельно регулируемыми длительностями переднего и заднего фронта (от 2.5ns) сигнал произвольной формы: 14 бит, дискретизация 250MS/s или 2GS/s
- Длина сигнала: 250MS/s: до 128K, 2GS/s: до 16K
- Модуляция: AM, FM, PM, FSK, PWM
- Режим импульсной и непрерывной генерации
- П/O ArbExpress для формирования сигнала произвольной формы
- Интерфейсы USB, GPIB и LAN

ЗАКЛЮЧЕНИЕ

- 1. Синтез элементов мультиплексирования и маршрутизации информационных каналов может быть осуществлен на основе комплексного анализа применимости специальных многооконных ВРБСФС с учетом возможности создания ВРБ с произвольным профилем отражения/пропускания и их структурирования по произвольным законам, например, фрактальным.
- 2. Зондирование и мониторинг информационных каналов на ВРБСФС может быть обеспечен использованием дискретного по спектру двух- или многочастотного зондирующего излучения.
- ◆ 3. Бортовая ВОСС может быть реализована на основе малогабаритных интегральных модулей, построенных на указанных выше принципах и с использованием многочастотных генераторов на основе модуляторов Маха-Цендера.

Работа выполнена при поддержке ФЦП развития НИУ «КГТУ им. А.Н.Туполева (КАИ)», за что авторы выражают глубокую признательность Федеральному и Республиканскому (Республика Татарстан) Правительствам и Директорату программы КНИТУ-КАИ.

Алюшина Светлана Герольдовна (аспирант)
Морозов Олег Геннадьевич (зав. каф., профессор)
Садеев Тагир Султанович (доцент)
Садыков Искандер Рустемович (магистрант)
Денисенко Евгений Петрович (магистрант)

12 октября 2011 года

«ВОЛОКОННЫЕ РЕШЕТКИ БРЭГГА С ФАЗИРОВАННОЙ СТРУКТУРОЙ В ИНФОРМАЦИОННЫХ КАНАЛАХ ВОСП-СР»

microoil@mail.ru

Спасибо за внимание!

Алюшина Светлана Герольдовна (аспирант) Морозов Олег Геннадьевич (зав. каф., профессор) Садеев Тагир Султанович (доцент) Садыков Искандер Рустемович (магистрант) Денисенко Евгений Петрович (магистрант)