Time	Session/presentation	Session/presentation
	1 track	2 track
	12 October	
8:00-10:00	Regis	stration
10:00-12:00	Opening ceremon	ny/Plenary session
12:00-12:30	Bi	reak
12:30-14:00	Session A1. Fiber-optic cables	Session B1. Fiber-optic communications – I
12:30-12:45	A1-1. Current state and prospects of development of fiber-optical cables in	B1-1. Zero Touch Photonic solutions for the prospective telecommunication
12:45-13:00	the world and the CIS countries (Invited)	networks (Invited)
	Meschanov G.I.(1)	Semyon S. Kogan
	(1) JSC VNIIKP	ZAO Alcatel-Lucent , Saint-Petersburg, Russia
	In the report presents data and analyze the main trends in the production of optical fiber and optical fiber cables, based on a common information model community.	The evolution to the intelligent photonic networks with dynamic routing of the optical connections based on GMPLS protocols was made possible as a result of the evolution from fixed (FOADM) to reconfigurable (ROADM) and, finally, the tunable/reconfigurable (TOADM)N-Degree add/drop multiplexers. In a modern DWDM transport network consolidation of flows received via 1GE & 10GE & 40G & 100G physical interfaces of service routers in a high-speed optical channels 40 and 100Gbps produced on the electrical level based on a standardized principles and structures of Optical Transport Hierarchy (OTH). It should be expected that in the coming years DWDM systems with a capacity of up to 8 - 10Tbps over a single fiber, the spectral efficiency of 2 bits / s / Hz and a range of transmission of several thousand kilometers will be requested around the world. Company Alcatel-Lucent has already implemented such kind Zero Touch Photonic concept for DWDN systems on the industrial scale.
13:00-13:15	A1-2. Calculation of seismic resistance optic cables, for different methods	B1-2. Modelling high-bit-rate telecommunication links (Invited)
	of laying	Fedoruk M.P.(1)
	Koryakın A.G.(1) Ların U.T.(1)	(1) Institute of Computational Technologies Siberian Branch of RAS
	(1) Kussian cable scientific and development institute JSC VNIIKP Moscow,	I ne report provides an overview of mathematical models and numerical
	In work calculations of saismic stability of optical cables are resulted under	lines. The examples of modeling fiber links of interest for practical applications
	different conditions of a laying. The basic ontical designs which are exposed to	are presented
	seismic influences and as some private questions of the calculation lavings of	
	optical cables concerning chances in premises of nuclear stations are	
	considered.	
13:15-13:30	A1-3. Optical cables in telecommunications	
	Vorontsov A.S.	
	Russian cable scientific research and development institute (VNIIKP .JSC).	
	Moscow	

13:30-13:45	A1-4. RADIATION-RESISTANT OPTICAL CABLE Dolgov I.I. ^{1*} , Larin Y.T. ²	B1-3. Simulation of 1000-km 40-Gbit/s Differential Phase-shift Keying Transmission System
	¹ LLC "Ivan Dolgov Laboratory" ("IDL" LLC) ² JSC "Russian Cable Research and Development Institute" (VNIIKP, JSC)	Redyuk A.A. (1), Shtyrina O.V. (1), Nanii O.E. (2,3), Kapin Ju.A. (3), Sachalin E.A. (3), Titov Je.B. (3), Treschikov V.N. (3), Jaryshkin A.A. (3), Fedoruk M.P.
	The principles of creation of radiation-resistant communications and control	(1,4)
	systems and fiber-optic cable (RR FOC) to work in the fields of ionizing	(1) Institute of Computational Technologies, Novosibirsk, (2) Moscow State
	radiations of different nature and with arbitrary dependence on the time of dose	University, Moscow, (3) T8 LLC., Moscow, (4) Novosibirsk State University,
	rate over the full operating temperature range. Presents the results of	Novosibirsk
	preliminary studies and calculations patented construction of RR FOC.	The performance of 1000-km 40-Gbit/s non-return-to-zero differential phase- shift keying (NRZ DPSK) transmission system is analyzed numerically and
		experimentally. We investigate the dependence of bit-error rate on residual
		dispersion and demonstrate a good agreement between numerical simulations and
12.15.14.00		experimental results.
13:45-14:00	A1-5. Results of localization of high PMD sections on fiber optical	B1-4. ANALYSIS OF MODULATION FORMATS FOR 40 G DWDM
	communication lines	COMMUNICATION SYSTEMS Novin O.E. (1.2). Truck-hilton V.N. (1).
	Dashkov M.V. Devolthelin State University of Telecommunications and Information Samana	Namy O.E. (1,2), I respectively of the interview of the i
	The results of field inspection of fiber ontical communication lines including	(1)18 Lia., Moscow (2)Moscow Lomonosov University, Moscow
	measurements of chromatic dispersion and polarization mode dispersion are	DWDM systems with channel capacity 40 Gbps. Concluded that the adaptive
	represented Specificities of localization of fiber section with high level of	differential phase format NRZ ADPSK is the most optimal format for use in
	polarization mode dispersion using PODTR are noted.	heterogeneous communication networks with channel speeds of 10 Gbps and 40
	r	Gbps. This conclusion is confirmed by the tests of a heterogeneous 80-channel
		DWDM system with 1200 km length (12x100 km).
14:00-15:00	Lu	inch
15:00-16:45	Session A2. Fiber-optic sensors – I	Session B2. Fiber-optic communications – II
15:00-15:15	A2-1. A multiplexed fiber optic sensors based on microoptomechanical	B2-1. Potential possibility of dispersion managed solution application for
15:15-15:30	resonant structures (Invited)	optical fiber link upgrade (Invited)
	Egorov F.A (1) Potapov V.T (1)	Burdin V.A. (1) Volkov K.A. (1) Dashkov M.V. (1)
	(1) Fryasino branch of the Institution of Russian academy of sciences	(1) SEIHPE Povolzhskiy State University of Telecommunications and
	Kotelnikov Institute of Radio Engineering and Electronics of RAS	Informatics, Samara
	Multichannel fiber optic measurement systems with frequency separation of	There are some methods of dispersion management for optical fiber link upgrade
	channels are investigated. These systems are based on the resonant interaction	are considered. Based on nonlinear Schrodinger equation with varying
	between optical fiber laser and microoptomechanical structures-sensitive	coefficients solving by analytic, variational and split-stop methods analysis of
	elements of sensors. Fiber optic sensor (FOS) schemes are proposed that are	such upgrade realization are presented.
	integrated in a single optical fiber and contain resonant sensitive elements of	
	sensors based on special optical inders. FOS sciences on pump-indudated inder	
	under the parametric resonance conditions E-2Fral/Fral is the frequency of	
	relaxation oscillations of a laser) is demonstrated	
	relaxation osemations of a faser) is demonstrated.	

15:30-15:45	A2-2. Fiber-optic sensor of the displacement with linear positional feature on the base of multicomponent optical structure Matyunin S.A. (1) Stepanov M.V. (2) (1) Samara State Aerospace University (2) FSUE SRPSRC TsSKB-Progress In this article structure of the fiber-optic sensor of the displacement is considered. Expression is received for linearization of the positional feature.	B2-2. A data encoding method for an optical fibre link Skidin A.S., Fedoruk M.P., Shafarenko A.V. (1) Institute of Computational Technologies, Novosibirsk; (2) Novosibirsk State University, Novosibirsk; (3) University of Hetfordshire, Hatfield, UK. We propose an adaptive constrained code for mitigation of the patterning effects and demonstrate that this approach can substantially reduce the bit error rate (BER) even for very large values of the channel BER (BER>0.1). The proposed technique can be used in combination with forward error correction schemes (FEC) to extend the range of channel BERs that an FEC scheme is effective over.
15:45-16:00	A2-3. Sparkadvance selector based on fiber-optic fuel quality sensor Sadykov I.R. (1) Morozov O.G. (1) Sadeev T.S. (1) (1) Tupolev Kazan state technical university The possibility of construction of the octane number and alcohol content monitoring sensor, based on π -shifted fiber Bragg gratings utilizing, is considered	B2-3. Using Coherent OTDR for protection cabling infrastructure of optical communication lines Nesterov E.T.(1), Ozerov A.Z.(1), Naniy O.E.(1,2), Treshchikov V.N.(1) (1) T8, Moscow (2) Lomonosov Moscow State University The report presents the experimental results of the first Russian device based on coherent OTDR Dunay for protection of fiber optic cable`s infrastructure. Developed device can detect an almost any construction work near the fiber-optic cable.
16:00-16:15	A2-4. Optically powered fiber-optic voltage transformerSokolovskiy A.A. (1,2) Sidorov S.V. (2) Kramskoy U.G. (2)(1)Institute of Radioegeneering and Electronics by name V.A. Kotelnikov RAS,Fryazino (2) ZAO Profotech , MoscowTecnical parameters of the optically powered fiber-optic voltage transformer aredescribed. Accuracy of mearsurement of the amplitude and phase high voltage(110-330kV)corresponds 0.2%.	B2-4. THE ANALYSIS OF NONLINEAR EFFECTS IN DWDMCOMMUNICATION SYSTEMS WITH DIVERSE CHANNELS (40G, 10G;DPSK, ASK)Kapin Y.A., Naniy O.E., Novikov A.G., Pavlov V.N., Plaksin S.O., TreshchikovV.N., Ubaidullaev R.R.78 Company, MoscowIt is necessary to expect that in DWDM systems with diverse channels characterof nonlinear distortions essentially differs from one in homogeneous systems10G/40G. Experimental researches of mechanisms of influence on the usedchannel 40G DPSK from the adjacent channels 10G ASK (the frequency plan of50 GHz and 100 GHz) are made in the report. Also two questions underinvestigation are the character of accumulation of nonlinear effects in 40G DPSKline and optimal control of dispersion in 40G DPSK line systems.
 16:15-16:30	A2-5. Experiments on creation of the reinforced optical sensors for controlof gas pipeline integrityKindras M.A. (1), Kuzub S.G. (2), Larin Yu.T.(3)(1)Ltd. VNIIKP-OPTIC Moscow, (2) CJSC NTC Optical fiber , SaintPetersburg, (3) OJSC VNIIKP , MoscowThis report gives data about experiments on creation of the reinforced opticalsensors for control of gas pipeline integrity. Possibilities of optical sensors on abasis of Bragg grid are described.	B2-5. Suppression of nonlinearity in high-bit-rate DPSK fibre linrs with optical phase conjugation Shapiro E.G., Fedoruk M.P. (1)Institute of Automation and Electrometry Siberian Branch of Russian Academy of Science, Novosibirsk, (2)Institute of Computational Technologies Siberian Branch of Russian Academy of Science, Novosibirsk In the work the results of direct nimerical modelling of error statistic in DPSK fiber link with optical phase conjugation are presented. It is shown that an increase in the number of devices optical phase conjugation reduces the probability of detecting errors at the receiving device if the number of devices does not exceed a certain value. Further increase leads to a sharp deterioration in the quality of the signal at the receiver.
16:30-17:00	Br	reak

17:00-18:15	Session A3. Fiber-optic sensors – II	Session B3. Fiber-optic communications – III
17:00-17:15 17:15-17:30	A3-1. Physical basics of development of fiber-optical adaptive measurement systems with ultrahigh sensitivity based upon dynamical holograms (Invited) Kulchin Yu.N.(1), Romashko R.V.Insitute of Automation and Control Processes of FEB RAS 	B3-1. RUSSIAN DEVELOPMENT OF HIGH SPEED DWDMCOMMUNICATION SYSTEMS (Invited)Treshchikov V.N.78 Company, MoscowRussian DWDM equipment PUSK is not inferior to and in a number ofparameters surpasses the similar equipment of leading foreign manufacturers.The total cable length of DWDM networks, we have built thus far, exceeds35000 km which is about 7 % of the whole length of DWDM networks in Russia.In 2011 our company has successfully demonstrated fiber optic 80 channelPUSK DWDM system with 40 Gbps per channel for transmission on 1200 km.
17:30-17:45	A3-2. Excitation of surface plasmon resonance by whispering gallery mode in a curved optical fiber Kulchin Yu.N., Vitrik O.B., Dyshlyuk A.V. <i>Institute for Automation and Control Processes FEB RAS</i> We present a novel refractometry technique for liquid media based on excitation of surface plasmon resonance (SPR) on the metal-coated outer boundary of a bent single mode optical fiber by whispering gallery mode (WGM). The signal read-out is done through the measurement of spectral interference pattern of WGM and the fundamental mode at the end of the bent section of the fiber. The theoretical spectral sensitivity of the technique is shown to reach as high as ~1800 µm/refractive index unit (RIU) with the smallest detectable refractive unit change approaching 10^-8 RIU	B3-2. Decision threshold optimization in optical communication systems Plaksin S. O. (1), Naniy O. E. (2), Repkin A. A. (3), Treshchikov V. N. (4) (1) Lomonosov MSU, OOO T8, Moscow, (2) Lomonosov MSU, OOO T8, Moscow, (3) OOO T8, Moscow, (4) OOO T8, Moscow The influence of decision treshold (RxDT - RxDT - Receiver Decision Threshold) on bit error ratio and optimization of the threshold depending on the data format and the presence of linear and nonlinear distortions were ivestigated in this paper. The influence of strong optical filtering on the bit error ratio and on the decision threshold was analized.
17:45-18:00	A3-3. System of amplitude measurements of physical quantities based on fiber Bragg gratings Denisenko P. E., Morozov O.G., Sadeev T.S. <i>A. Tupolev Kazan State Technical University</i> The report considers possibility of using a system based on amplitude measurement method with a fiber Bragg grating as a sensitive element. The features of measurement technique and application of Bragg gratings with a special structure for different industries.	B3-3. INFORMATION CHANNELS OF WDM SYSTEMS WITH PHASE STRUCTURED FBG Aliushina S.G.(1), Denisenko P.E. (2), Morozov O.G. (2,3), Sadykov I.R.(2), Sadeev T.S.(2,3) (1) Technical School of Electrical Telecommunication, Cheboksary (2) Tupolev State Technical University, Kazan (3) Povolgskii State University of Telecommunication and Informatics (Kazan Branch), Kazan In this paper, we consider the synthesis of fiber Bragg gratings with a phase pi- shift, the model normalization and the formation of a triangular spectrum, the structuring of Cantor sets principle and their applications in WDM systems information channels.

18:00-18:15	A3-4. ALL-FIBER ELECTRIC CURRENT SENSOR ON	B3-4. On the training of specialists in the field of optical communication in
	MICROSTRUCTURED SPUN FIBER	SibSUTI
	Chamorovskiy Yu.K.(2), Starostin N.I.(1), Sazonov A.I.(1), Prjyalkovskiy	Zaslavsky K.E. (1) Gorlov N.I. (2)
	Ya.V.(2),Morshnev S.K.(1), Gubin V.P.(1), Boev A.I(2).	Siberian State University of Telecommunications and Informatics, Novosibirsk
	(1)Fryazino branch of the Institution of Russian academy of sciences Kotel	city
	nikov Institute of Radio Engineering and Electronics of RAS1 (Kotel nikov FIRE	The experience of training specialists in the field of optical communications at
	RAS) (2)close corporation Profotech, Moscow	the Siberian State University of Telecommunications and Informatics. A brief
	A new optical scheme of an interferometer for a current sensor has been	information about the material base and the bases of the passage of industrial
	suggested. The basic elements of interferometer (a phase modulator, a	practice.
	connecting bifilar line and a sensing coil) are made on base of a microstructured	
	spun fiber. The Phase modulator includes a fiber coil located in a magnetic field	
	of a solenoid with modulating current. The Modulator provides a direct	
	modulation and so does not demand of delay line. The results of experimental	
	researches of a suggested scheme are presented. An interference of modulator	
	and sensing coil through optical circuit is discovered in such scheme. The	
	processing algorithm of output interferometer signal is offered for minimization	
	of this effect.	
19:00	Rece	eption

	13 October	
8:30-10:00	Session A4. Fiber-optic sensors – III	Session B4. Optical fibers and components – I
8:30-8:45 8:45-9:00	A4-1. Fiber optoelectronic devices for detection of impurities and atmospheric gases on the base near-infrared diode lasers (Invited)	B4-1. ELLIPTICAL POLARIZATION MODES IN OPTICAL FIBERS (Invited)
	Ia.Ia. Ponurovskiy A.M. Prokhorov General Physics Institute of RAS 38 Vavilov str., 119991 Moscow, Russia e-mail: jak@nsc.gpi.ru Describes of the some questions to use diode lasers with fiber radiation output for ecology, medicine and industries	 Morshnev S.K.(1), Chamorovskii Yu.K.(1,2) (1)Kotelnikov Institute of Radio-engineering and Electronics of RAS, Fryazino. (2)PROFOTEX, Moscow. The propagation of elliptical polarized modes in spun-fibers, including microstructured fibers is considered. The spun-fibers are promising for application in magnetic field sensors or current sensors, due to a Faraday effect accumulation with length of a fiber. The model of a screw helical structure of axes of a linear birefringence built-in in a spun-fiber, is used. The built-in circular birefringence is not taken into account. It is shown, that application of elliptic polarization states at the inlet in a sensing device allows to increase the sensors sensitivity to a magnetic field for both conventional and microstructured spun-fibers.
9:00-9:15	A4-2. Application possibility of optical fiber sensors for graphite columns temperature and deformation control of an RBMK-1000 nuclear reactor O.V.Butov (1), K.M.Golant (1), A.V.Lanin (1), I.A.Shevtsov (2), A.N.Fedorov (2), V.V.Shushlebin (3) (1) V.A.Kotel nikov Institute of Radio Engineering and Electronics of RAS (2) Prolog Co.,Ltd. (3) JSC Institute of nuclear materials High temperature Bragg gratings were written in a nitrogen-doped-silica-core radiation-resistant optical fiber. Their application possibility in principle as a graphite columns temperature and deformation sensors for an RBMK-1000 nuclear reactor was investigated in the IYR IVV-2M nuclear reactor core environment. The experiments were performed at the average neutron flux of 6.2x1013 cm(-2) c(-1) (E > 1 MeV) and the gamma-photon flux of $9.3x1014$ cm(-2) c(-1) in the central part of the reactor core at the temperature of 400-600 0C.	В4-2. Anisotropic single mode optical fiber with elliptical F-P2O5-SiO2 cladding Андреев А. Г.(1),Буреев С. В.(2), Дукельский К. В.(2), Ермаков В. С.(1), Ероньян М. А.(2), Комаров А. В. (2), Полосков А. А.(1), Цибиногина М. К.(1) (1)OAO Perm Research and Production Instrument Company, Perm (2)OAO Research and Technological Institute of Optical Material Science All- Russian Scientific Center S.I. Vavilov State Optical Institute, Saint-Petersburg The results of studies on co-doping of silica glass with fluorine and phosphorus by the modified chemical vapor deposition are presented. The parameters of the process of obtaining a low-melting glass with a refractive index close to the refractive index of vitreous silica are determined. The possibility of manufacturing the anisotropic single-mode optical fibers with elliptical cladding having a high coefficient of thermal expansion is shown. The effect of temperature on the length of polarization modes beats is investigated.
9:15-9:30	A4-3. Mid-Infrared spectroscopic fiber sensors for molecular sensing Butvina L.N.(1), Butvina A.L.(1), Zagorodnev V.N.(2), Lichkova N.V.(2) (1)Fiber Optics Research Center RAS, (2)Istitute technology microelectronics IPTM RAS, Chernogolovka Molecular specific Mid-IR spectroscopic sensing by silver halide fibers will be presented. Desing of sensor, applications in chemical process control in line will be discussed	B4-3. Structure of acoustic waves in SBS strengthenong in optical fibers Knish Olga Naniy Oleg Pavlova Eugene (1) MSU, Faculty of Physics, Moscow The report presents the results of numerical investigation of the shape of the acoustic waves generated by stimulated Brillouin scattering in optical fibers with different structures and its relationship with the coefficient of the SBS gain. It is shown that in general the structure of the generated acoustic waves may differ significantly from the structure of acoustic modes of an optical fiber. It was established that to improve the SBS threshold is necessary to use fibers that have a strong refraction, and to increase the amplitude of the acoustic wave is advisable to use fiber with focusing acoustic properties.

9:30-9:45	A4-4. Fiber Fabry-Perot cavity-based probe with a protruding	B4-4. Influence of Ni impurity on the second-order nonlinearity induced by
	subwavelength aperture	thermal poling in high purity tellurite glass 0.78TeO2 - 0.22WO3.
	Kulchin Yu.N.(1), Vitrik O.B.(1), Kuchmizhak A.A.(1)	Gladyshev A. V. (1), Yatsenko Yu. P. (1), Grebenev V. V. (2), Snopatin G. E.
	(1)Institution of Russian Academy of Science Institute for Automation and	(3), Plotnichenko V. G. (1), Dianov E. M. (1), Churbanov M. F. (3), Corbari C.
	Control Processes of Far Eastern Branch of RAS	(4), Kazansky P. G. (4).
	Present paper is devoted to investigation of the possibility of creating a cavity-	(1) Fiber Optics Research Center RAS, (2) A.V.Shubnikov Institute of
	based probe for near-field optical microscopy systems based on a fiber Fabry-	Crystallography RAS, (3) G.G. Devyatykh Institute of Chemistry of High-Purity
	Perot interferometer with subwavelength protruding aperture. It was shown that	Substances RAS, (4) Optoelectronics Research Centre, Southampton, UK
	the probe ensures a spatial resolution no worse than $\lambda/37$ for $\lambda=1550$ nm.	High purity 0.78TeO2 - 0.22WO3 glass was thermally poled and the influence of
		controllable addition of Ni on induced second-order nonlinearity (SON) was
		investigated. It was shown for the first time that SON as high as 1.2 pm/V could
		be obtained in such a glass without the need to inject external charge carriers. We
		found that Ni concentrations of more than $5 \cdot 10-4$ wt % significantly reduce SON.
		Impedance spectroscopy measurements of electrical conductivity revealed the
		reduction of conductivity in Ni containing glasses.
9:45-10:00	A4-5. Low-coherence fiber-optic temperature sensor	B4-5. The setup for studying the phenomenon of thermal diffusion in micro
	Volkov P.V. (1) Goryunov A.V. (1) Lukyanov A.Yu. (1) Tertishnik A.D. (1)	cell-based fiber-optic elements
	(1) The Institute for Physics of Microstructures RAS, Nizhny Novgorod	Popov M.Y.(1), Okishev K.N.(1)
	A possibility to design a fiber-optical temperature sensor based on low-	(1)Far Eastern State Transport University, Khabarovsk
	coherence tandem interferometry is reported. For the sensing element we used a	The results of the pilot study the phenomenon of thermal diffusion of carbon
	500 µm thick plane-parallel plate of fused silica. The plate thickness determined	nanoparticles in cyclohexane. The design of the experimental setup is based on
	the measurement range of 40 to 90 C. The temperature resolution in the center	fiber-optic elements. Proposed an automatic attenuator for fiber-optic line, which
	of this range was 0.03 C RMS, decreasing to 0.1 C RMS at the edges.	uses the phenomenon of thermal diffusion.
	Reproducibility of the measurement data was better than 0.2 C.	
10:00-10:30	Bi	reak
10:30-12:30	Session A5. Fiber lasers and amplifiers – I	Session B5. Optical fibers and components – II
10.00.10.15		
10:30-10:45	A5-1. Subnanosecond high-energy all-fiber laser system	B5-1. Photonics bandgap optical fibers (Invited)
	Nyushkov B.N.(1), Turitsyn S.K.(2), Kobtsev S.M.(3), Ivanenko A.V.(3),	Likhachev M.E.
	Pivtsov V.S.(1), Denisov V.I.(1)	Fiber Optics Research Center RAS
	(1) Institute of Laser Physics SB RAS, Novosibirsk, (2) Aston University,	This paper reviews state-of-art of photonics bandgap fibers. The mechanism of
	Birmingham (UK), (3) Novosibirsk State University, Novosibirsk	light guidance, existing designs and their applications are discussed.
	An all-fiber laser system, which generates subnanosecond pulses with hearly	
	0.5- $4J$ energy at a repetition rate of ~ 82 kHz, has been developed on basis of an	
	design Special design features, namely compared in for polarization	
	instability in the ultra long equity orm, and application of an intracevity	
	handness filter based on a fiber Dragg grating along with a tilted fiber grating	
	angura high stability of lager characteristics and suppression of smallfield	
	ensure lingh stability of laser characteristics and suppression of amplified	
	spontaneous emission.	

10:45-11:00	A5-2. Coherent beam combination of fiber laser array	
	Yu.N.Pyrkov (1), V.B.Tsvetkov(1), A.S.Kurkov(1), A.I.Trikshev(1),	
	I.A.Shcherbakov(1)	
	General Physics Institute RAS	
	In the article experimental results on coherent combination of the emission of 7	
	low-power fiber lasers are presented. The laser system consisted of the single	
	frequency master oscillator with the subsequent splitting on 8 channels - one	
	reference channel and 7 so-called power ytterbium doped power amplifier	
	(YDFA) channels. Results of research of dependence of beam quality of total	
	laser emission from the power unbalance value of power channels and distance	
	between them are presented.	
11:00-11:15	A5-3. Channel Waveguide Lasers Written in YAG Crystals by	B5-2. Variation of microstructures for the single-mode large-core fiber
	Femtosecond Pulses	performance improvement
	A.G.Okhrimchuk (1) A.V.Shestakov (2) V.Mezentsev (3) I.Bennion (3)	Demidov V.V., Dukel`skii K.V., Komarov A.V., Shevandin V.S.
	(1) Fiber Optics Research Center RAS, Moscow (2) ELS Co., Moscow (3) Aston	S.I. Vavilov Federal Optical Institute, Saint-Petersburg
	University, Birmingham, UK	Results of novel types of single-mode large-core microstructured fibers
	A 110-ym core diameter multimode waveguides in the bulk of YAG:Nd3+,	development are presented. We report about shifted-core, circular-cladding and
	YAG:Yb3+ and YAG:Nd3+/YAG:Cr4+ crystals are fabricated by beam of	C3v-symmetry structures. The single-mode operation is provided by the proper
	femtosecond pulses through inscribing several tens of parallel tracks composing	conditions for the strong (about several dB/m) higher-order mode attenuation. In
	a depressed cladding. Efficient CW and Q-switch laser operation is	addition, the resistance of the fundamental mode to bend occurs simultaneously
	demonstrated in the fabricated waveguides under direct butt-coupling of a	due to the increased air-filling fraction in the structured cladding.
	multimode fiber delivering pump light from high aperture laser diode with	
	NA=0.15. Waveguide propagation loss was determined by Finlay-Clay analysis	
11.15.11.20	in oscillation experiments and was found to be as low as 0.12 dB/cm.	D5 2 Challen and a sheriday I among Mada Anna Dava Bilan ana dia dia dia
11:15-11:30	A5-4. SPIM induced spectral broadening of high power Q-Switched fiber	B5-5. Single-mode polarizing Large-Mode-Area Bragg Fiber operating in a
	Hasers Kuznateou A G (1) Dobin S A (1) Dodivilou E V (1)	wide spectral range S.S. Alashking(1) M.F. Likhashay(1) A.D. Dryamikoy(1) D.A. Gananoy(1.2)
	(1) Institute of Automation and Electrometry SP PAS Novosibirsk	A N Denisov(1) M M Bubnov(1) M Yu Salganskii (2) A Yu Lantav(2) A N
	(1) Institute of Automation and Electrometry SB KAS, Novosionsk	A.N. Dellisov(1), M.M. Dublov(1), M. I u. Salgaliskii (2), A. I u.Lapiev(2), A.N. Gurvanov (2) S Favriar(3) Vu A Uspanskii(A) N L Popov(A)
	calculations and comparison of input and output from fiber amplifier signals	(1) Fiber Ontics Research Center of the Russian Academy of Sciences Moscow
	with experimental data were performed. It was shown that our new modified	(1) Fiber Optics Research Center of the Russian Academy of Sciences, Moscow, Russia (2) Institute of High Purity Substances of Russian Academy of Sciences
	model for Gaussian pulses has a good agreement with experimental data and it	Nizhny Novgorod, Russia (3) Xlim, IIMR 6172 CNRS - University of Limoges
	model for Gaussian pulses has a good agreement with experimental data and it makes possible to simulate processes of harmonics generation of fiber O-	France (4) P N Lebedev Physical Institute of RAS Moscow Russia
	Switched lasers	A new design of a polarizing all-glass Bragg fiber has been proposed. The
		microstructured core of the fiber provides suppression of high-order modes and
		of one of the polarization states of the fundamental mode. The fiber cladding
		with a Bragg mirror has been fabricated by a new, simple method based on a
		combination of the MCVD-process and the rod-in-tube technique. The mode-
		field area has been found to be about 870 um2 near λ =1064 nm The polarization
		extinction ratio as large as 12 dB has been observed over a broad wavelength
		range (33%) after propagation of a 1.7-m fiber piece bent to a radius of 70 cm.

11:30-11:45	 A5-5. Highly-chirped dissipative solitons generated in the fibre cavity without spectral filtering Kharenko D.S. (1,3), Babin S.A. (1,3), Podivilov E.V. (1), Shtyrina O.V. (2), Yarutkina I.A. (2), Fedoruk M.P. (2,3) (1) Institute of Automation and Electrometry SB RAS, Novosibirsk, (2) Institute of Computational Technologies SB RAS, Novosibirsk (3) Novosibirsk State University, Novosibirsk The possibility of stable mode-locking regime in a laser with all normal dispersion cavity without the use of aditional spectral filtering was investigated. Stable generation of higly-chirped pulses with a pulse energy about 1nJ and a duration of 2 ps. Experimentally shows, that the chirp parameter an increase with increasing cavity length. Obtained results was compare with the analytic solution of complex Ginzburg-Landau equation in high-chirp approximation. 	B5-4. Mathematical modeling of a diphasic problem about an extract of hollow quartz fibres taking into account blowing by a stream of inert gas Pervadchuk V.P. (1), Onyanov V.A. (2), Shumkova D.B. (2) (1) Institute of photonic, optical and electronic instrument making of the Perm state technical university, Perm (2) Perm State Technical University, Perm Modeling of a regional problem about an extract of the hollow quartz fibre which are passing in a cylindrical thermoelement and flowed round by a stream of inert gas is spent. The numerical algorithm of the decision is developed, research of properties of the constructed numerical algorithm is conducted, the decision of a quasione-dimensional stationary problem is received. The problem about an extract of a hollow quartz fibre taking into account a current in a cavity of a capillary of a stream of inert gas is numerically solved. From results of calculations follows that the developed numerical method can be applied to the decision of a diphasic problem on an extract of a quartz fibre and definition of optimum high-speed and temperature modes of an extract.
11:45-12:00	A5-6. Dispersion-managed soliton amlification in mode-locke thulium- doped fiber laser Krylov A.A. (1) Chernysheva M.A. (1) Tupitsin I.M. (2) Kryukov P.G. (1) Dianov E.M. (1) (1) Fiber Optics Research Center RAS, Moscow (2) National nuclear scientific research university MEPHI, Moscow We report all-fiber scheme of thulium-doped mode-locked fiber laser with intracavity group velocity dispersion compensation, generating dispersion- managed solitons, and an amplifier that compress this solitons to 230 fs- duration and amplifies to pulse energy of 14 nJ.	B5-5. About a nature of optical losses in hollow core microstructured fibers and methods of controlling them Biriukov A. S. (1) Pryamikov A. D. (2) Kosolapov A. F. (3) <i>Fiber Optics Research Center RAS, Moscow</i> In this report a view of the problem of origin of optical losses in hollow core microstructured fibers (HCMF) is carried out. The methods of controlling them is also considered. With this point of view, the last experimental and theoretical results in the field of light transmission in the near and mid IR spectral regions in HCMFs obtained at FORC RAS are analyzed.
12:00-12:15	A5-7. Investigation of Active Double-clad Tapered Optical Fiber V.E. Ustimchik (1,2), S.A. Nikitov (1,2), Yu.K. Chamorovskii (1) (1)Institute of Radio-engineering and Electronics of the Russian Academy of Sciences, Mokhovaya st. 11, bld.7, 125009 Moscow, Russia (2)Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, 141700, Dolgoprudniy, Moscow region, Russia The model of lasing in active double-clad tapered optical fibers, based on the rate equations in adiabatic approximation is developed. We performed numerical modeling of a lasing process in ytterbium doped tapered fibers with various geometric profiles and mirrors on both ends. Advantages of tapered fibers with respect to cylindrical fibers are presented. These are low power density, high output power, higher slope efficiency, smaller length that is necessary for achievement of similar output power.	B5-6. Analysis and optimization of model structures of highly birefringent microstructured fibers Denisov A.N., Levchenko A.E., Semjonov S.L., Dianov E.M. <i>Fiber Optics Research Center RAS, Moscow.</i> We present the results of the numerical analysis of different model structures, which approximate the highly birefringent microstructured fibers (HiBi MSFs) prepared by us. The strong dependence of the calculated values of birefringence on the curvature of holes in the region, which is directly adjacent to the core, and their independence on the presence/absence of the second layer of holes is shown. For the calculations of the birefringence of the prepared by us HiBi MSFs the model structure is proposed, which possesses the best accuracy of the description of HiBi MSF core with relative geometric simplicity.

12:15-12:30	A5-8. Fiber lasers in processing of films and surface coatings	B5-7. Waveguide properties of the solid and hollow core photonic crystal
	Surmenko E.L. (1), Sokolova T.N. (1), Popov I.A. (1), Kurkov A.S. (2)	fibers
	(1) Saratov State Technical University, Saratov (2) Prokhorov General Physics	Mazhirina Yu.A.(1), Melnikov L.A.(2)
	Institute RAS, Moscow	(1) Saratov State University, (2) Saratov State Technical University
	Laser technology is described for cleaning of surface and processing of films for	The dispersion diagram of the waves propagated in the cladding of photonic-
	trimming of resistors. The low-power fiber laser having microsecond pulse,	crystal fibers can include the bandgaps due to the periodicity of the cladding. If
	pulse repetition rate up to 30 kHz and mean power 4.5 W was applied. The	the dispersion curve of the core mode in the region below the cutoff intersects the
	suggested technology allows reducing the time of manufacture and the amount	bandgap, this mode may become guided again. We calculated the dispersion
	of the operations needed for the same result with other equipment.	characteristics of the photonic-crystal fibers with solid and hollow core for the
		different structures with one- and seven-element defects. The calculations
		confirmed the existence of the waveguiding regions within the cladding photonic
		bandgaps.
12:30-13:00	B	reak
13:00-14:15	Session A6. Fiber-optic sensors – IV	Session B6. Optical fibers and components – III
13:00-13:15	A6-1. Distributed sensors based on coherent pulse reflectometry and their	B6-1. New technologies and materials for fabrication of active optical fibers
13:15-13:30	applications (Invited)	(Invited)
	Gorshkov B.G.	Guryanov A.N.
	Omega company	Institute of Chemistry of High Purity Substances RAS, Nizhnii Novgorod
	Phase sensitive reflectometry based on high coherent pulse light sources	
	becomes an industrial technology due to achievements in fiber lasers. The	
	coherent reflectometer allow to monitor vibrations at thousands of independent	
	channels in real time. This property promise numerous applications on the field	
	of extended objects monitoring as well as guard systems. In the report the	
	examples of full scale application of coherent pulse reflectometry at oil industry	
	are discussed.	
13:30-13:45	A6-2. Brillouin OTDR with an aspect by measuring the frequency shift	B6-2. Doping of optical fiber preforms by oxide and metal nanoparticles
	Sitnov N.U. (1) Zaslavski K.E. (2) Gorlov N.I. (3)	Campelj Stane (1) Lenardic Borut (1) Kveder Miha (1)
	Siberian State University of Telecommunications and Informatics, Novosibirsk	(1) Optacore d.o.o., Ljubljana, Slovenia
	city	Presented paper reports on doping of silica glass layers by nanoparticles of
	Study the limits of the functionality of the Brillouin OTDR with an aspect by	oxides and noble metals, during fabrication of optical fiber preforms by MCVD
	measuring the frequency shift. Provides a block diagram of an analyzer based	process equipped with specialized doping devices. Preforms doped by different
	on the aspect method, Brillouin OTDR.	nanoparticle types were deposited in varying process conditions and analyzed.
		"Flash vaporization" and "Aerosol" doping method is demonstrated as suitable
		method for deposition of nanoparticles in silica layers, permitting in-situ
		fabrication of complete preforms.

13:45-14:00	A6-3. Statistics of backscattering intensity in single mode optical fiber for semiconductor laser diode used as light source	B6-3. Fabrication of aluminophosphosilicate glass fibers heavily doped with Er2O3 by MCVD method
	Alekseev A.E.(1), Tezadov Y.A., (1), Potapov V.T. (2) (1) NTO IRE-Polus CO, Fryazino, Moscow Region, (2) Institute of	Gur yanov A.N. (1), Lipatov D.S. (1), Bubnov M.M. (2), Likhachev M.E. (2) (1) Institute of Chemistry of High Purity Substances RAS, Nizhnii Novgorod, (2)
	Radioengineering and Electronics Fryazino Department, Fryazino, Moscow	Fiber Optics Research Center RAS, Moscow
	Region,	Two gas-phase techniques for Er2O3 doping of aluminophosphosilicate glasses
	The results of the study of backscattering intensity statistics in single mode	have been developed. In the first technique all oxides, forming fiber core, were
	optical fiber for semiconductor laser diode used as light source are presented.	deposited simultaneously. With this procedure the erbium content in
	The probability density function depends on the ratio of pulse duration and	aluminophosphosilicate glasses did not exceed 1 wt %. In the second technique a
	source coherence time and changes with the increase of this ratio from the	porous Al2O3-P2O5-SiO2 layer was infiltrated with Er2O3 from the gas phase.
	function with exponential decay to Gaussian function. The exponential statistics	This procedure ensures considerably higher rare-earth doping levels in
	enables better sensitivity of the coherent optical time domain reflectometer with	aluminophosphosilicate glasses of up to several weight percent.
	direct detection method.	
14:00-14:15	A6-4. Some question about application of optical fibers as temperature sensors	B6-4. Study of physical and chemical processes of fluorine doping of silica by MCVD method
	Zamvatin I.A.(1), Larin Yu.T.(2), Smirnov Yu.V.(3)	Eronvan M. A.
	(1) VNIIKP-OPTIC Ltd., Moscow, (2) VNIIKP OJSC, Moscow, (3) NPP	OAO Research and Technological Institute of Optical Material Science All-
	Starlink Ltd., Moscow	Russian Scientific Center S.I. Vavilov State Optical Institute . Saint-Petersburg
	This report discusses the application of optical fibers as temperature sensors.	Processes of fluorine doping of silicon dioxide nano-particles and their sintering
	The authors give information about experimental use of G-652 optical fibers for	are investigated by computational and experimental methods. It is shown that
	temperature measurement in the range of minus 193 to 100 for the purpose of	with increasing content of fluorine increases the rate of sintering of porous
	cable product and cable system characteristics control. Cable constructions were	layers, obtained by vapor deposition. Known dependence of the refractive index
	tested under real service conditions are offered.	of silica glass on the pressure SiF4 in the degree of 0.25 determined by the
		competition of these two processes.
14:15-15:15	Lu	inch
15:15-16:30	Session A7. Fiber-optic communications – IV	Session B7. Optical fibers and components – IV
15:15-15:30	A7-1. Round table "Coherent optical communications"	B7-1. The SPCVD technology (Invited)
15:30-15:45	Moderator – Turitzyn S.K.	Golant K. M.
		Kotel nikov Institute of Radio-Engineering and Electronics of RAS, Moscow
		The operation principle and performance capabilities of the modern technology
		for deposition of high-purity and specialty-doped silicon dioxide by means of
		scanning microwave-induced surface-wave plasma are illustrated by their
		practical application to solutions to various tasks topical for photonics and fiber
		optics.
15:45-16:00	A7-2. Modulator s bias instability impact on all-optical microwave filter s	B7-2. Cristobalite - new material for fibre optics
	frequency responce	Chernoskutov A.G.
	Sadeev T.S. (1) Morozov O.G. (1)	(1)OAO Miass machine building plant , Miass
	A.N.Tupolev Kazan state technical university (1), Kazan	
	Questions of modulator s bias instability impact on the all-optical microwave	
	filter s frequency responce. Shown that this instability should be taken into	
	consideration and compensated if necessary when filter is based on	
	electrooptical modulator.	

16:00-16:15	A7-3. Intensity modulator based on Mach-Zehnder Interferometer	B7-3. Method of fabrication of the silica glass doped optical materials for	
	Follomatev K.S.	Valmiskin V. V. Egorova O. N. Samionay S. L. Dianov F. M.	
	This article is devoted to telecommunication modulator based on Mach Zehnder.	Fiber Optics Research Center RAS	
	interferometer Results of Perm Scientific Industrial Instrument Making	The method of fabrication of preforms of active silica optical fiber by sintering of	
	Company produced sample are presented. On off extinction results and	newdors ovides is investigated. A number of the preforms and fiber deped ions	
	modulation efficiency results are exhibit. Also operating point stable results are	Vb_{3+} Al_{3+} Bi_{2+} 3_{\pm} is obtained and them structural optical and luminescent	
	presented. Experimental sample was made with proton exchange and appealing	properties is investigated. The minimum level of optical background losses in the	
	technology	fibers containing 2 wt % A12O3 was 60 dB/km at a wavelength 1 um. The	
	technology.	technique of reduction to submicronic sizes of optical and concentration	
		fluctuations in a obtained optical material is developed and realized	
16.15-16.30	A7-4 The stability of symbol frequency of a DBPSK signal formed using I	R7-4 DEVELOPMENT OF AMPLITUDE-PHASE TUNARLE	
10.15 10.50	in-Morozov approach	DIFFRACTIVE OPTICAL ELEMENTS	
	Lerner I.M. (1). Ilvin G.I. (1)	Matyunin S.A. (1). Paranin V.D. (2)	
	(1) Kazan State Technical University named by A.N. Tupoley	Samara State Aerospace University. Samara	
	The stability of symbol frequency depending on probabilities of occurrence of	The construction and working principles of tunable amplitude diffractive optical	
	ones and zeroes in a binary semi-random sequence is studied. Normalized	elements (TDOE) and tunable ampli-tude-phase diffractive optical elements are	
	spectrums depending of probabilities of occurrence of ones and zeroes in a	proposed. Theoretical models of developed optical elements are created. Com-	
	binary semi-random sequence are shown	puter modeling of optical and functional properties of TDOE is implemented.	
16:30-18:00	Poster	Session	
	C-1. Algorithmic compensation for thermally induced shift in FOG		
	Galyagin K.S.(1), Ivonin A.S. (1,2), Oshivalov M.A. (1), Vahrameyev E.I. (1)		
	(1) Perm State Technical University (2) Perm Scientific - Industrial Instrument Making Company		
	The technique to obtain the calculated prediction of the fiber-optic gyroscope thermal drift according to the thermometry data of the sensitivity unit to correct the		
	readings in terms of thermal disturbances is studied. The results of practical testing algorithm for correction of thermocyclic tests of the device are presented. The		
	methodical aspects of the calibration characteristics of a gyroscope formation to improve the accuracy and reliability of thermal displacement compensation are		
	viewed.		
	C-2. Modern fiber-optic sensors temperature, pressure for biomedicine		
	Korolyov V.A., Potapov V.T.		
	Fryazino branch of the Institution of Russian academy of sciences Kotel nikov Institute of Radio Engineering and Electronics of RAS, Fryazino		
	Provides an overview of today's commercial fiber-optic sensors temperature and pressure for possible use in surgery and oncology. We show the existence of real high tash products for biomedical applications of this class. Are the basic tashnical characteristics of concerns		
	C.2. Somiconductor fiber entic loser give		
	C-5. Semiconductor inter-optic laser giro Prokofyaya I. P.(1). Sakharoy V.K.(1). Sheharbakov V.V.(1).		
	ISV Center VOSPL Mascow		
	A new approach to realizing of a semiconductor fiber ontic laser gyroscope based	I on a noval model of frequency locking phenomenon in a ring laser is proposed	
	The model is directly related with backscattering and the approach uses a long fib	per-optic resonator (~300 m) optical injection of external emission in the ring laser	
	and phase difference of two counter-propagating beams		
	C-4. Regimes of bound solitons in fiber lasers with saturable absorbers		
	Komarov A.K.(1), Komarov K.P.(1), Meshcheriakov D.V.(2)		
	(1) Institute of Automation and Electrometry SB RAS. Novosibirsk. (2) Novosibirs	sk State Technical University. Novosibirsk	
	Using numerical simulation we have analyzed an interaction of ultrashort pulses and realizing various types of soliton bound states in fiber lasers with saturable		
	absorbers. Characteristic modifications of regimes of bound solitons under a variation of laser parameters have been found. The developed theory of passive laser		
	mode-locking and the obtained results allow to describe, interpret and optimize re	egimes of generation of fiber lasers with the nonlinear losses due to various	

nanomaterials (media with quantum dots, nanotubes, graphene, and so on).
C-5. Hysteresis of energy characteristrics of passive mode-locked fiber lasers.
Komarov A.K. (1), Dmitriev A.K. (2), Meshcheriakov D.V. (2)
(1) Institute of Automation and Electrometry, Novosibirsk, (2) Novosibirsk State Technical University, Novosibirsk
We have found the multihysteresis dependence of an intracavity radiation energy on pumping for passive mode-locked fiber lasers. The relation between the energy
multihysteresis and the analogical hysteresis for a peak intensity and for a number of pulses in an established operation has been determined. It is shown, that under
a variation of a pump, the hard (threshold) and soft regimes of excitation and annihilation of ultrashort pulses in a laser cavity can be realized. In the case of the soft
regime the pulse parameters change continuously.
C-6. The observation of excitation threshold of the Slow solitary elastic waves (SSEW) with discrete velocities in glass sample of millimeter cross-section
Kudriavtsev E.M. (1), Zotov S.D. (1), Lebedev A.A. (1)
P.N. Lebedev Physical Insitute of the RAS, Moscow
The investigations of Slow solitary elastic waves (SSEW) with discrete velocities in samples of millimeter cross-section are continued. Modifying of the schlieren-
method calibration techniques revealed a mistake in the previous experiments (report 2009). To simplify the experiments on the threshold, the SSEW excitation was
produced by electrical heaters, which have different speed and value of heating. It is important to determine the SSEW mechanism that the SSEW components
formed both at heating and at cooling of electrical heater with the sample contact point (i.e. the cause of the waves is the local deformation of the sample).
C-7. Structural realization and classification of tunable diffractive optical elements
Paranin V.D.
Samara State Aerospace University, Samara
The analysis of principles of working and designs of tunable diffractive optical elements (TDOE) is presented. The system of splitting VДOЭ on base elements of a
design and also system of designations of base elements is offered. The analysis of increasing sensitivity methods for TDOE is carried out.
C-8. Resistance against freezing water effects in protective polymeric duct in microduct optical cable
Alekhin I.N. (1) Burdin V.A. (1) Gavryushin S.A. (1) Nikulina T.G. (1) Onyshchenko S.G. (2)
(1) SEIHPE Povolzhskiy State University of Telecommunications and Informatics, Samara (2) JSC SOCC
Results of experimental researches of optical microcable in microduct at water freezing in protective polymeric duct are presented.
C-9. Optical fiber light-guide cladding defects localization
Burdin V.A. (1) Dashkov M.V. (1) Dmitriev E.V. (1) Kachkov D.A. (2)
(1) SEIHPE Povolzhskiy State University of Telecommunications and Informatics, Samara (2) JSC Svyazstroy-4, Nizhniy Novgorod
 Results of physical simulation of optical fiber light-guide cladding defects localization based on comparison polarization backscattering characteristic are presented.
C-10. Transmission spectra of fiber-optic interferometer based on a section of small-core fiber under bending
Ivanov O.V. (1,2)
(1) Ulyanovsk Branch of Kotel nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Goncharova 48, 432011 Ulyanovsk (2)
Ulyanovsk State University, ul. Tolstogo, 42, 432970 Ulyanovsk
A fibre-optic interferometer based on interaction between core and cladding modes that are coupled at splices of fibres having unmatched mode profiles is
investigated. The interferometer is formed by splicing a section of small-core fibre between two standard fibers. The transmission spectra of the interferometer are
measured for different curvatures of the inserted fiber section. The transmission spectra exhibit resonance shifts to long wavelength with increasing curvature of the
fiber.
C-11. Simulation modeling of quartz optical fibres drawing process
Pervadchuk V.P. (1) Krukov I.I.(2) Davydov A.R. (1)
(1)The Perm State technical university, Perm (2) Perm Research and Production Instrument Company (PNPPK), Perm
An approach to simulation modeling of the drawing process of preparation of quartz optical fibers is offered. Modeled by a deterministic relationship of geometric
and technological parameters of preparation and fiber based on the law of conservation of mass. Stochastic component of the change in the diameter quartz
simulated normal distribution. Managing the process is to keep the diameter of the quartz in a given range by appropriately adjusting the drawing. Quality of the
process is controlled by the coefficient of repeatability. Propose a model of evaluation of optical fiber characteristics.

C-12. Fiber-optic hydrophones with low optical losses
Belovolov M.I.(1), Zaynullin E.F.(1), Turtaev S.N.(1), Granev I.V.(2)
(1) Fiber Optics Research Center RAS, (2) JSC Perm Research and Production Instrument Company (PNPPK)
The excess optical losses of standard single mode fibers on the coils has been investigated experimentally and best performance fiber was found for hydrophone
applications.
C-13. Broadband spectral wavelength tuning of fiber laser using reflection interferometer
Terentyev V.S. (1) Simonov V.A. (1)
(1) Institute of Automation and Electrometry SB RAS, Novosibirsk
The results of experimental studies of the wavelength tuning of a fiber erbium laser using a two-mirror reflection multiple-beam interferometer (RI) is reported. The
RI can act as a spectral selector in reflected light because of the asymmetry of the front mirror reflectivity, since it forms in reflection the same interference pattern
as a Fabry-Perot interferometer has in transmission. It was obtained smooth tuning of the fiber laser wavelength in the range of 1520-1566 nm.
C-14. NUMERICAL INVESTIGATION OF FEMTOSECOND RADIATION PARAMETERS INFLUENCE ON MODIFICATION PARAMETERS OF
FUSED SILICA IN FEMTOSECOND MICROFABRICATION
Dostovalov A. V. (1), Babin S. A. (1), Mezentzev V. K. (2),
(1) Institute of Automation and Electrometry Siberian Branch of Russian Academy (2) Aston University, Birmingham, United Kingdom
The results of numerical study of energy absorption in femtosecond inscription in fused silica with fundamental ($\lambda = 1030$ nm) and second harmonics ($\lambda = 515$ nm)
of femtosecond laser are presented. It is shown absorbed energy at $\lambda = 515$ nm is higher than absorbed energy at $\lambda = 1030$ nm, therefore the second harmonic is
more preferable for femtosecond microfabrication, because modification threshold is lower in this case. The results of influences of following pulse parameters:
chirp, temporally asymmetry are presented.
C-15. Investigation of formation mechanisms of micro-inhomogeneities at core-cladding interface in heavily doped silica optical fibers
Alekseev V.(1), Likhachev M.(1), Bubnov M.(1)
(1) Fiber Optics Research Center RAS, Moscow
Anomalous scattering on refractive-index micro-inhomogeneities is the main source of optical loss in heavily doped and microstructured optical fibers. It leads to
some added loss in weakly doped fibers, too. Two mechanisms to explain the formation of the micro-inhomogeneities have been proposed: capillary waves and
hydro-dynamic instability of the core-cladding interface during the drawing process. In this paper, investigations are reported which allow one to conclude that it is
the hydro-dynamic instability of the core-cladding interface that gives rise to the micro-inhomogeneities. Techniques to reduce optical loss in such fibers are
proposed.
C-16. Amplifier of chirped pulses on the bases of the Large-Mode-Area Fibers
S.S. Aleshkina (1), M.E. Likhachev (1), M.M. Bubnov (1), M.Yu. Salganskii (2), Yashkov M.V. (2), Lipatov D.S. (2), A.N. Guryanov (2)
(1) Fiber Optics Research Center of the Russian Academy of Sciences, Moscow, Russia (2) Institute of High Purity Substances of Russian Academy of Sciences,
Nizhny Novgorod, Russia
Amplification of ultra-short chirped pulses (1=1.03 um) in the MOPA system (master oscillator - power amplifier) with output cascade based on different types of
Large-mode-area Yb-doped fibers is investigated.
C-17. Mathematical modeling and stability of processes of an extract of fotonno-crystal optical fibres
Pervadchuk V.P. (1), Shumkova D.B. (1)
(1) Institute of photonics, optical and electronic instrument making of the Perm state technical university, Perm
One of important indicators of quality of a fibre is the constancy of its properties and the geometrical sizes on length. Questions of stability and definition of area of
parameters are investigated, at which probably continuous formation of an optical fibre. Process of an extract of hollow quartz pipes is described by system of four
differential equations in private derivatives. Research of stability of process of an extract of capillaries is shown to a problem on own values of system of the
ordinary differential equations with corresponding boundary conditions.
C-18. A method for measuring the refractive index of liquids based on the resonant coupling of modes in curved Fabry-Perot
Kulchin Yu.N. (1), Vitrik O.B. (1), Gurbatov S.O. (1)
(1) Institution of Russian Academy of Sciences Institute for Automation and Control Processes Far Eastern Branch of RAS
This work is devoted to developing a method of measuring the refractive index based on the resonant coupling of modes in curved Fabry-Perot

C-19. Modulator s bias control system in the structure of an all-optical microwave filter	
Sadeev T.S. Morozov O.G.	
(1) Tupolev Kazan state techn. university	
The results of studies on the impact of bias point instability on the frequency response of the all-optical microwave filter fully demonstrated the need to control the	
position of the bias point. In this study, the bias point monitoring system, implemented in the filtering channel and in filter coefficients formation channel are	
 suggested.	
C-20. Nonlinear Dynamics of long Raman fiber laser	
Romanova E.I. (1) Melnikov L.A. (2)	
(1)Saratov State Technical University (2)Saratov State Technical University	
Raman fiber lasers having cavity length about tens km are useful for communications and for other applications. Its features includes low beat frequency of	
longitudinal modes, small cavity bandwidth, huge number of longitudinal modes, feedback due to light scattering. In present paper the dynamical model of these	
lasers is presented. Corresponding equations for pumping and generation pulse amplitudes are derived together with corresponding boundary conditions,	
 demonstrating different regimes of operation.	
C-21. Application of highly non-linear fibers in optical communication lines with dispersion compensation	
Kirill A. Volkov Michael V. Dashkov	
Povolzhskiy state university of telecommunication and informatics, Samara	
In this paper features application of HNLF in dispersion managed fiber optical communication lines are considered. Results of analitical numerical simulation of	
 quasi-soliton in dispersion managed section including HNLF are presented.	
C-22. EFFECT OF PRE-GAMMA IRRADIATION ON LOW-TEMPERATURE KINETICS OF COLOR CENTERS IN POLARIZANGTI	
MAINTAINING FIBERS	
Burmistrov A.C. ⁺ , <u>Dolgov I.I.</u> * ² , Dolgov P.I. ²	
FSUE "Center of use of ground space infrastructure" (FSA FSUE "TSENKI")	
² LLC "Ivan Dolgov Laboratory" (LLC "IDL")	
It has been presented the results of researching the effects of gamma-radiation up to dose of 270 kR at a dose rate 6.2 R/s and temperature of +50 °C on kinetics of	
radiation-induced optical attenuation (RIA) measured at a temperature of minus 60°C in IRE RAS manufactured test samples of polarization maintaining fibers of	
the PANDA-type with 4 of various types of dopants. It is proposed to introduce a comparative benchmark RIA (CBRIA), which will always be applied in	
all labs. Quartz optical fibers of the same type, for example, doped with germanium are proposed as CBRIA. This will allow to compare objectively methods and	
results of measurements made by different authors.	
C-23. The role of longitudinal surface electric field in the sensitivity of cladding modes of optical fiber to the external medium	
Ermolaev I.V. (1), Ivanov U.V. (2,3) (1) $H = -\frac{1}{2} \int \frac{1}{2} $	
(1) Utyanovsk State Technical University, Utyanovsk, (2) Utyanovsk Branch of Institute of Radio Engineering and Electronics. V.A. Koteinikov RAS, Utyanovsk, (3)	
Ulyanovsk State University, Ulyanovsk The consistivity of long period fiber protings and other components based on the use of eladding modes to the external medium is due to proposition of a surface.	
The sensitivity of long-period fiber gratings and other components based on the use of cladding modes to the external medium is due to propagation of a surface field has the same order of magnitude as the transverse field. Therefore, the role of	
the longitudinal component in the consistivity of eledding modes to peremeters of the external modium is investigated	
 C 24 New photostobility ID lightenides on the base of eilyer and thellium (I) holides solid solutions emotols	
C-24. New photostability IK-ingingulues on the base of silver and thannum (1) handles sold solutions crystals Koreakov A S (1) Zhukova L V (1) Charapapov A N (1) Zharikov E V (2) Novikov A V (1) Koreakov E A (1)	
(1) Unal Federal University named after the first Dresident of Pussia P N Eltsin Veltatorinhurg (2) Mondeleyey University of Chemical Technology of Pussia	
Moscow	
The new photostability crystals on the base of silver and thallium (I) balides solid solutions are elaborated. On their base there were also made IP lightquides by	
extrusion method. For the structure with TII there is more than three times photostability increasing shown in contrast with AgCl-AgBr system.	

C-25. High-purity TeO2-based glasses and optical fibers	
Dorofeev V.V. (1), Moiseev A.N. (1), Churbanov M.F. (1), Snopatin G.E. (1), Kosolapov A.F. (2), Plotnichenko G.V. (2), Dianov E.M. (2)	
(1) - Institute of Chemistry of High-Purity Substances of RAS, Nizhny Novgorod (2) - Fiber Optics Research Center RAS, Moscow	
Tellurite glasses were made of high-purity oxides with 3d-transition metals content of 10-5-10-7 % wt Hydroxyl groups concentration corresponds to absorption of	
0,001-0,002 cm-1 at maximum of the band (~3 microns). Absorption loss in glasses were of 40-100 dB/km (1.56 microns). Compositions with increased stability	
against crystallization were defined. Multimode fibers with optical loss of hundreds dB/km, singlemode step-index and microstructured fibers were produced by	
double crucible and rod-in-tube methods.	
C-26. REQUIREMENTS TO DESIGN AND ENGINEERING EQUIPMENT FOR FIBRE-OPTICAL MANUFACTURES	
S.V. Sazhnev, Ph.D.	
OOO "Eltochpribor"	
Fibre-optical manufacture is a complex system of technological, engineering and ancillary equipment, under conditions of increased industrial safety. In the report	
the basic approaches to designing, requirements to the industrial infrastructure, providing high quality of fibre-optical products are observed. The special attention	
is given to the system of safety at proceeding with explosive and aggressive reagents.	

	14 0	ctober
8:30-10:00	Session A8. Fiber-optic sensors – V	Session B8. Optical fibers and components – V
8:30-8:45	A8-1. Fiber optic sensors and measuring systems based on single fiber	B8-1. New Corning optical fiber products and their applications (Invited)
8:45-9:00	multimode interferometers (Invited)	Akopov S.G.
	Vitrik O.B. (1)	OOO Corning SNG , Moscow
	(1) Institution of Russian Academy of Sciences Institute for Automation and	Progress in new coherent equipment development for long distance transmission
	Control Processes Far Eastern Branch of RAS	and worldwide progress in installation of FTTx networks created new approaches
	The aim of this paper is to review the possible application of single-fiber	to new optical fiber designs. The article contains information about new product
	multimode interferometer to create transducers and multichannel measuring	line of Corning fiber products, about their physical background and
	systems for monitoring the technical state of different objects.	recommendations for their applications.
9:00-9:15	A8-2. Principles of constructions of intelligent fiber optic sensors	B8-2. Development of a modified correlation method of defects localization
	Buymistriuck G.Y.	in optical fibers
	The Instruments plant Vibrator, Saint-Petersburg	Konstantinov Y.A. (1), Mazunina T.V. (1)
	Information redundancy of fiber optic sensors, as well as possibility to their	(1) Perm Scientific Industrial Instrument-Making Company
	programmable tuning in combination with a minimum structural redundancy	A new method for localization of defects in an optical fiber by the OTDR data
	allow to develop the so-called intelligent sensors with a function of metrological	processing, based on a special algorithm is shown. The algorithm is based on the
	self-checking (FMSC). The FMSC of fiber-optic sensors is provided with their	calculation of the cross-correlation coefficient on intervals of reflectograms of
	multimodality, i.e. with their similar dependence of an output signal on several	varying lengths. Testing of method was carried out on reflectogram models
	variable parameters, for example, with their dependence on a variable pressure	generated by the OTDR software emulator.
	at a constant optical spectrum of an input signal and, accordingly, on a	
	readjusted optical spectrum of the signal at a constant pressure. Details of the	
	intelligent fiber optic pressure sensors based on a Fabry-Perot interferometer, as	
	well as acoustic emission sensors based on the intrinsic fiber Doppler effect and	
	strain sensor based on Bragg grating are considered. Results of modeling are	
	presented, and comparison of the experimentally obtained metrological and	
	technical-economical characteristics such as noise.	

9:15-9:30	A8-3. Frequency response of coil based fiber optic acoustic sensors	B8-3. Photodarkening of active ytterbium-doped silica fibers under UV and
	Belovoiov M.I.(1) Turtaev S.N.(1) Zaynulin E.F.(1)	IN INSET-IFFACIATION $D_{1} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
	(1) Fiber Optics Research Center RAS	$\begin{array}{c} \text{Kybaitovsky A.A. (1), Alesnkina S.S. (1), Umnikov A.A. (2), Yasnkov M.V. (2),} \\ \text{L'iller be } ME_{(1)} D_{(1)} D_{($
	Acoustic frequency response of SMF-28 fiber based multicoil elements has	Liknachev M.E. (1), Bubnov M.M. (1), Guryanov A.N. (2), Dianov E.M (1)
	been investigated depending on the typical coating materials in similar	(1) Fiber Optics Research Center RAS, Moscow (2) Institute of Chemistry of
	conditions.	High-Purity Substances of RAS
		The results of comparative investigations of UV and IR laser-induced absorption
		and luminescence spectra in the Ytterblum-doped fibers and preforms are
		reported. It is established that UV-laser excitation of absorption bands peaking at
		5 and 6.5 eV leads to absorption induction in the visible spectral range - the same
		under the form, as well as induced by IR pumping-laser. The phenomenological
		model of photodarkening effect is offered: it is proposed that process of colour-
		effect based on the supersonaux Vtterbium ion noire excitation and transforming
		that sumulative excitation energy to the 5 and 6.5 aV sheemtion energy levels
0.20 0.45	A9.4 Therma ecouctic effect in fiber interferometers and concerns	D8.4 Appending of observation induced by UV rediction in U2 loaded
9.30-9.43	Ao-4. Thermo-acoustic effect in fiber interferometers and sensors Releveley $M I (1)$ Releveley $A M (1)$ Disperse $E M (1)$ Turteey $S N (1)$	sormonosilisete fibers
	(1) Fiber Optics Pasagrab Center PAS	Vacilian S.A. Madvadkov O.I. Grusin P.I. Dianov F.M.
	For the first time, acoustic, frequency splitting has been detected for the case	Fiber Optics Research Center RAS Moscow
	when temperature is acting on the fiber arm of an interferometric acoustic	Annealing of absorption in the 1.4-um wavelength range induced by IIV-
	sensors. It is shown that this thermo-acoustic effect allows the creation of highly	radiation in H2-loaded germanosilicate fibers was studied by temperature
	sensitive temperature sensors (sensitivity of $\sim 10-3$ oC)	resolved spectroscopy. This method allowed us to determine the characteristic
	sensitive emperature sensors (sensitivity of 10 5 00).	temperature ranges of annealing of photoinduced groups - H2O Ge-OH and Si-
		OH - and as a result to analyze the contribution of these groups to the induced
		refractive index
9:45-10:00	A8-5. Application of Distributed Acoustic Fiber Sensors	B8-5. Photosensitivity of H2-loaded fibers heavily doped with germanium
	Shatalin S.V. Parker T.R. Farhadiroushan M.	Medvedkov O.I., Vasiliev S.A., Gnusin P.I., Dianov E.M.
	Silixa LTD, UK	Fiber Optics Research Center RAS, Moscow
	The distributed fiber-optic acoustic sensor can measure acoustic field	Writing and annealing processes of fiber Bragg gratings in H2-loaded fibers
	continuously in space and time with spatial resolution better than 1 m. This tool	heavily doped with germanium have been investigated. It was found that owing
	promises a lot of useful applications in oil industry including downhole Doppler	to the competition of two photosensitivity mechanisms (type I(H2) and type IIa),
	flow meter. Distributed acoustic also can be a base of a new generation of	the reflection coefficient of the grating experiences twofold oscillation during the
	seismology and security systems.	grating fabrication. Annealing of the induced refractive index is also
		nonmonotonic.
10:00-10:30	Bi	reak

10:30-12:30	Session A9. Fiber lasers and amplifiers – II	Session B9. Optical fibers and components – VI
10:30-10:45	A9-1. Fiber lasers with random distributed feedback (Invited)	B9-1. Corning specialty optical fibers (Invited)
10:45-11:00	Babin S.A.	Valery Kozlov
	Institute of automation and electrometry SB RAS, Novosibirsk, Russia	Corning Inc., Corning, NY USA
	Novosibirsk state university, Novosibirsk, Russia	Overview of specialty optical fibers manufactured by Corning specialty fiber
	A review of the recent papers on the fiber lasers with random distributed	group
	feedback (RDFB) is performed. It is shown that the feedback reasoned by the	
	Rayleigh scattering in a long fiber with distributed Raman amplification even	
	without regular reflectors results in a stationary narrowband (~1nm) lasing of	
	high (~30%) efficiency. A tuning of such laser in broad range of 1535-1570 nm	
	with high flatness (~0.1dB) has been demonstrated. A combination of the	
	RDFB and fiber Bragg gratings array results in competition-free	
	multiwavelength generation of >20 lines with 1-nm spacing. Unique features of	
	the RDFB laser are treated.	
11:00-11:15	A9-2. Mid-IR supercontinum generation in standard telecommunication	B9-2. Coatings for specialty optical fibers (Invited)
	fibers	Stolov A.A.
	Kurkov A.S. (1) Kamynin V.A. (1)	OFS, Specialty Photonics Division, Avon, CT, USA
	(1) General Physics Institute RAS, Moscow	In our presentation we review the types of polymeric materials utilized as coating
	We have studied the supercontinum generation in the spectral range of 2-2.4	on specialty optical fibers. Advantages and shortcomings of various materials are
	micron. Cladding pumped Q-switched Er-doped fiber laser was used as a pump	discussed in conjunction with specific applications of the fibers. We analyze our
	source. Single-mode fibers with zero dispersion wavelengths at 1.3 and 1.55	own and documented data on behavior of optical fibers with different coatings at
	micron and multimode fiber were used for the spectral conversion. It was shown	high and low temperatures and in harsh environments.
	that the supercontinum is observed in all fibers. Conversion efficiency achieves	
11.15.11.20	40%.	
11:15-11:30	A9-3. Kandom distributed feedback fiber Raman laser, operating in a 1.2	
	Vetnik I. D. (1.2) Churkin D. V. (1.2) Pakin S. A. (1.2)	
	(1) Institute of Automation and Electrometry Novosibirsk (2) Novosibirsk State	
	(1) Institute of Automation and Electrometry, Novosiolisk (2) Novosiolisk State	
	Random distributed feedback fiber Raman laser operating at 1175 nm has been	
	demonstrated Feedback is provided by Rayleigh backscattering by	
	inhomogeneities of refractive index. We have obtained generation with total	
	efficiency up to 60% and narrow spectrum with FWHM of 1 nm Cascade	
	generation of the second Stokes component, provided by Rayleigh feedback	
	has been achieved.	

11:30-11:45	A9-4. Extreme events statistics in the output radiation of the Raman fiber	B9-3. High Temperature Metal coated optical fibers
	laser	Voloshin V.V. (1) Vorob yov I.L. (1) Ivanov G.A. (1) Isaev V.A. (1) Kolosovsky
	O.A. Gorbunov (1), S.V. Smirnov (2), D.V. Churkin (1),(2)	A.O. (1) Borat L. (2) Popov S.M. (1) Chamorovsky Y.K. (1)
	(1) Institute of Automation and Electrometry, SB RAS, Novosibirsk (2)	(1) Institute of Radio-technique and Electronics Russian Academy Of Science,
	Novosibirsk State University	Fryazino Branch, Russia (2) Optacore, Ljubljana, Slovenia
	In the present paper we study the extreme events in the output radiation of the	Temperature band of ordinary telecommunication optical fibers (OF) is -
	partially coherent quasi-CW high-Q cavity Raman fiber laser. It is found that	60850C. The developing fiber optic sensors which can work at higher
	rear rogue events are generated at the far spectral wings of the spectrum. Having	temperatures, required to develop metal coated optical fibers. Previously we
	big spectral detunings, extereme events are more pronounced in the output	investigated the influence different metal coating types (aluminum or copper) on
	radiation of the high-Q cavity. The mechanism of the extreme events generation	optical loss of metal coated OF up to 4000C. In present work we investigated
	is turbulent-like four-wave mixing of numerous longitudinal modes inside the	additional optical loss change of copper coated OF at temperatures t=20800C.
	cavity.	Such fibers were drawn from low hydroxyl (<0.3 ppm) contamination preforms.
11:45-12:00	A9-5. Fiber optical parametric oscillator based on a polarization	B9-4. Influence of weak local heat on the work of fiber
	maintaining fiber	Rumanov E.N. (1), Yachmeneva O.E. (1)
	Zlobina E.A.(1), Kablukov S.I.(1,2), Babin S.A(1,2)	Institute of Structural Macrokinetics and Material Science RAS, Chernogolovka,
	(1) Institute of Automation and Electrometry, Siberian Branch, Russian	Moscow Region
	Academy of Sciences, Novosibirsk, (2) Novosibirsk State University,	The case of weak absorption of optical intension in the light guide was
	Novosibirsk	considered. The middle part of the fiber was heated up to temperature
	Continuous wave parametric generation near 1 μ m with the birefringence phase	comparable with environment one. Critical value of laser intension was found.
	matching technique is realized for the first time in a polarization maintaining	This value divides the field of cooling from the field of explosive increase of
	fiber. Frequency up-conversion with 8.6 THz shift from the pump wave and 3.3	temperature. The case of weak absorption looks like focal explosion. Unsteady
	% efficiency has been demonstrated experimentally. A fiber optical parametric	conditions of wave motion are similar to phase waves.
	oscillator with the resonator for the Stokes wave is also tested. Up to 100 mW	
	of anti-Stokes output power is achieved.	
12:00-12:30	B	reak
12:30-14:00	Session A10. Fiber lasers and amplifiers – III	Session B10. Optical fibers and components – VII
12:30-12:45	A10-1. Efficient Bi-doped fiber lasers and amplifiers (Invited)	B10-1. Chalcogenide glasses for mid-infrared range: advances and problems
12:45-13:00	Butetov I.A.	(Invited)
	Fiber Optics Research Center RAS, Moscow	Churbanov M.F., Shiryaev V.S.
	In this talk we review latest developments of Bi-doped fiber lasers and	Institute of chemistry of high-purity substances of RAS, Nizhny Novgorod
	amplifiers. 10 watt-level Bi fiber lasers have been demonstrated at 1270, 1280,	The report contains a review on chalcogenide glasses suitable for preparation of
	1330, 1340, 1360 and 1460 nm with efficiency up to 50%. A 24dB gain	mid-infrared optical fibers. The methods of optical fibers manufacturing taking
	Bismuth-doped fiber amplifier pumped by a 65mW commercial laser diode at	into account the properties and features of glasses have been considered. The
	1310nm was reported. Analysis of simple composition Bi-doped fibers gives a	optical and mechanical parameters, performance characteristics of optical fibers,
	new approach to understanding of nature of Bismuth active centers in glass.	realized and promising examples of their applications have been given.

13:00-13:15	A10-2. High-power double-clad Er-doped fiber amplifier	B10-2. Hollow - core microstructured optical fiber with a negative curvature
	Kotov L. V. (1), Likhachev M. E (1), Bubnov M. M. (1), Medvedkov O. I. (1),	of the core boundary. Production and investigation.
	Lipatov D. S. (2), Vechkanov N.N. (2), Guryanov A.N. (2)	Kosolapov A.F. (1), Pryamikov A.D. (1), Biriukov A.S. (1), Shiryaev V.S. (2),
	(1) Fiber Optics Research Center RAS, Moscow, (2) Institute of Chemistry of	Astapovich M.S. (1), Snopatin G.E. (2), Plotnichenko V.G. (1), Churbanov M.F.
	High Purity Substances of RAS, Nizhny Novgorod	(2), and Dianov E.M. (1)
	In this paper, we propose a new Er-doped fiber design, that allow to create high	(1) Fiber Optics Research Center RAS, Moscow (2) Institute of Chemistry of
	power double-clad fiber amplifier. A dependence of a slope efficiency on a	High-Purity Substances of RAS, Nizhny Novgorod
	signal wavelength was researched.	A technologically simple optical fiber cross-section structure with a negative-
		curvature hollow-core has been practically realized using silica and chalcogenide
		glasses as the fiber material. The waveguide regime in spectral region near 4 чm
		in silica-glass hollow-core fiber has been demonstrated. Guidance of 10.6 чт
		CO2-laser radiation through the chalcogenide-glass hollow-core fiber has been
		demonstrated for the first time.
13:15-13:30	A10-3. Holmium-doped fiber laser with the highest quantum efficiency	B10-3. Nano- and microcrystalline IR-lighguides research and development
	slope.	Chazov A.I.(1), Zhukova L.V. (1), Korsakov A.S.(1), Vrublevsky D.S.(1),
	Sholokhov E.M. (1), Kurkov A.S. (1), Tsvetkov V.B. (1)Marakulin A.V. (2),	(1)Korsakova E.A. (1)
	Minashina L.A. (2), Kosolapov A.F. (3) Medvedkov O.I. (3)	(1) Ural Federal University named after the first President of Russia B.N. Eltsin,
	(1) General Physics Institute RAS, Moscow (2) Russian Federal Nuclear Center	Yekaterinburg
	VNIITF, Snezhinsk (3) Fiber Optics Research Center RAS, Moscow	The Ag1-xTlxBr1-yIy, Ag1-xTlxClyBrzI1-y-z crystals are promising for nano-
	We have made a set of the lasers based on the fiber doped by holmium ions with	and microstructured IR-lightguides production. The presence of TII which is
	the concentration of 1.6·1019 cm-3. Emission wavelengths were of 2.02, 2.05,	heavier expands the spectral transmission range, increases photostability and
	2.07, 2.1 micron, and the pumping wavelength was of 1.15 micron. Efficiency	prevents grain recrystallization in IR-lighguides produced by extrusion. Because
	slope was measured for all lasers. Maximum efficiency of 0.455 was achieved	of TII presence the core-shell interface becomes well-defined. There exists a
	at 2.05 micron. It is shown that efficiency of generation influence as loss at edge	correlation among solid solutions composition, grain size and optical losses on
	of the vibration band of silica, and active ions clustering.	the wavelength 10,6 μm in IR-lightguides.
13:30-13:45	A10-4. Broad-range self-sweeping of a narrow-line Yb-doped fiber laser	B10-4. IR-cables for industrial processes control systems production
	Lobach I.A. (1,2), Kablukov S.I. (1,2), Podivilov E.V. (1,2), Babin S.A. (1,2)	organization
	(1) Institute of automation and electrometry SB RAS, Novosibirsk, Russia (2)	Korsakov V.S.(1), Zhukova L.V.(1)Kortov S.V. (1), Korsakov A.S. (1), Zhukov
	Novosibirsk state university, Novosibirsk, Russia	V.V.(1), Chazov A.I. (1)
	The effect of broad-range (16 nm) self-sweeping of a narrow-line (less than 1	(1)Ural Federal University named after the first President of Russia B.N. Eltsin,
	pm) in Yb-doped fiber laser has been demonstrated experimentally for the first	Yekaterinburg
	time. It is found that the effect arises from the self-sustained relaxation	Single-mode and multimode IR-lightguides having heightened photostability,
	oscillations. So a sweeping rate is increased with an increase in pump power	expanded transmission range $(2-40 \ \mu\text{m})$ and fiber scintillators are developed. It is
	and is decreased with increasing cavity length. Based on these results we	proposed to set the IR and scintillation cables of wide application production on
	propose a model describing dynamics of the laser frequency. The model is	their base.
	based on the spatial hole burning effect and the gain saturation in Yb laser	
	transition, and takes into account self-pulsing of the laser.	

13:45-14:00	A10-5. Bismuth-doped silica glasses synthesized by SPCVD technology	B10-5. Nanostructured crystalline fibers with fundamentaly low loss for
	Bazakutsa A.P. (1) Butov O.V. (1) Golant K.M. (1)	wavelenght 7-12 um
	(1) Kotel nikov Institute of Radio Engeneering and Electronics of RAS	Butvina L.N.(1), Butvina A.L.(1), Dianov E.M.(1), Lichkova N.V.(2), Zagorodnev
	The SPCVD technology has been applied for the fabrication of for bismuth-	V.N.(2)
	doped silica optical fiber preforms . The results of comaprison study of	1 Fiber Optics Research Center RAS Moscow 2 Insitute microelectronics
	luminescence in various samples of bismuth-doped amorphous silicon dioxide	technology RAS Chernogolovka
	obtained at differente stages of fiber preform fabrication by SPCVD technology	For the fist time extruded nanostructured crystalline fibers 50AgCl-50AgBr with
	are summarised in the present paper.	fundamentally multiphonon low loss 0.04-0.05 dB/m in mid infrared wavelength
		range 8-11 um.
14:00-15:00	Lunch	
15:00-16:00	Closing ceremony	