ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность

Демонстрация первого волоконного лазера на ионах Nd³⁺ в 1961 году открыло новую веху в истории развития оптических квантовых генераторов. Однако широкий интерес к волоконным лазерам и усилителям возник лишь в конце 80х – начале 90х годов 20 столетия, когда появились мощные полупроводниковые источники накачки. Интенсивное развитие этого направления в течение вот уже почти 20 лет обусловлено теми преимуществами, которые отличают волоконные лазеры от всех остальных типов лазеров. В первую очередь стоит отметить высокую надежность (вследствие отсутствия элементов, нуждающихся в юстировке), компактность (вследствие возможности намотки световодов на небольшие катушки) этих систем. Низкие пороги генерации и высокая эффективность позволяют получать излучение на химических элементах, для которых генерация в объемных образцах не представляется возможной или затруднительна (ярким примером этого являются висмутовые волоконные лазеры). В то же время, излучение в волоконных световодах локализовано в относительно небольшой области пространства (диаметр сердцевины, как правило, равен 3-10мкм), а длина активного волокна достаточно велика (~1-50м). Как следствие, порог нелинейных эффектов волоконных лазеров оказывается низким, что ограничивает максимальную выходную мощность. Данная проблема особенно актуальна при создании мощных импульсных источников наносекундной пикосекундной длительности. Пиковая мощность в таких лазерах может достигать уровня сотен кВт и даже 1 МВт при относительно небольшой средней мощности (1-100Вт).

Решением данной проблемы является увеличение диаметра поля моды световода. В случае традиционных конструкций волоконных световодов, основанных на полном внутреннем отражении, препятствием для этого становится резко возрастающая чувствительность световодов к изгибам. Так рекордно большие размеры поля моды и рекордные значения энергии в импульсе в настоящий момент были получены в микроструктурированных световодах [1, 2] (Photonic Crystal Fiber – PCF и Large-Pitch PCF - LPF), отражающая оболочка которых содержит микрокапилляры. Разность показателя преломления сердцевины и средней величины показателя преломления оболочки Δn не превышает 5·10⁻⁵. Поэтому, чтобы обеспечить распространение света в конструкции световода со столь малым значением Δn , микроструктурированные световоды вытягиваются в виде негнущихся стержней диаметром 1-2мм, что делает волоконные лазеры на их основе достаточно громоздкими. Более того, вследствие наличия в сечении световода множества микроскопических отверстий, микроструктурированные световоды практически невозможно сварить с приемлемо низкими потерями с обычными световодами. Это в

свою очередь приводит к необходимости использовать объемные элементы для ввода и вывода излучения, и, как следствие, снижает надежность таких систем.

По этой причине важной задачей является поиск альтернативных конструкций полностью стеклянных (не содержащих воздушных отверстий) световодов с большим диаметром поля моды. В настоящее время значительное внимание уделяется исследованию нового типа световедущих структур – световодов на основе фотонной запрещенной зоны (ФЗЗ). В отличие от традиционных световодов излучение в сердцевине ФЗЗ световода удерживается за счет когерентного френелевского отражения от слоев отражающей оболочки. Несмотря на то, что первые ФЗЗсветоводы были предложены сравнительно давно (60-70 гг. ХХ века) [3, 4], интенсивное их изучение продолжается всего около 20 лет и на момент написания диссертации четкого понимания свойств таких структур, не было. В то же время, высокая экспериментально полученные результаты, в частности, изгибная устойчивость, делают такие структуры перспективными для создания световодов с большим полем моды.

Таким образом, актуальность текущей работы определяется необходимостью поиска новых конструкций световодов с большим полем моды, а также необходимостью исследования свойств ФЗЗ-световодов, особенно в случае увеличения размеров их сердцевины.

Основной целью диссертационной работы являлось исследование свойств полностью стеклянных ФЗЗ-световодов, а именно их подкласса – брэгговских световодов. Особое внимание планировалось уделить случаю брэгговских световодов с большим диаметром поля моды. В рамках сформулированной цели планировалось провести следующие исследования:

- Исследование влияния параметров брэгговского световода на его оптические потери в прямом световоде и чувствительность к изгибу
- Исследование возможности получения одномодового режима работы в брэгговском световоде с большим полем моды
- Исследование свойств анизотропных брэгговских световодов с большим полем моды и изучение возможности создания поляризующих брэгговских световодов.

Научная новизна диссертационной работы

Проведено исследование (теоретически и экспериментально) зависимости потерь на вытекание прямого и изогнутого брэгговского световода от его параметров (диаметра и показателя преломления сердцевины, количества и показателя преломления оптически более плотных слоев оболочки) для случая четвертьволновой толщины слоев оболочки. Показано, что данную зависимость возможно описать при помощи простой аналитической модели брэгговского световода.

- Разработаны методы подавления мод высшего порядка в активных и пассивных брэгговских световодах с большим диаметром поля моды, основанные на различии в пространственном распределении электрического поля мод.
- Разработан метод подавления одного из состояний поляризации фундаментальной моды брэгговского световода с большим диаметром поля моды (~ 30мкм), основанный на микроструктурировании сердцевины.

Практическая значимость диссертационной работы

Получены простые аналитические формулы, позволяющие связать потери на вытекание в прямом и изогнутом брэгговском световоде с его параметрами (диаметр и показатель преломления сердцевины, количество и показатель преломления оптически более плотных слоев оболочки).

Предложены и реализованы конструкции активных и пассивных брэгговских световодов с большим диаметром поля моды, подавление мод высшего порядка в которых достигнуто за счет метода дифференциального усиления мод (частичного легирования сердцевины световода) и за счет соответствующего подбора геометрии световода (метода микроструктурирования сердцевины). В том числе реализована конструкция активного брэгговского световода с диаметром поля моды 26 мкм (на длине волны 1.064 мкм) с пониженной чувствительностью к изгибам, а так же конструкция поляризующего световода со средним диаметром поля моды 33 мкм.

Использование активных брэгговских световодов с большим полем моды в схемах усиления ультракоротких импульсов показало возможность достижения с их помощью высоких энергий и высоких средних мощностей. Кроме того, работоспособность таких световодов была протестирована в полностью волоконной схеме лазера.

Результаты работы, выносимые на защиту:

Проведено экспериментально-теоретическое исследование влияния параметров брэгговского световода на его волноводные свойства и одномодовость. Предложена простая аналитическая модель световода, позволяющая связать параметры структуры и его характеристики: величину оптических потерь и чувствительность к изгибу.

- Реализованы брэгговские световоды с большим полем моды, в которых одномодовый режим распространения получен за счет использования дополнительных методов подавления мод высшего порядка.
- Реализована конструкция брэгговского световода с большим полем моды, поляризующего в широком спектральном диапазоне.

Апробация работы

Результаты исследований, изложенные диссертационной работе, В опубликованы в трех статьях и доложены на трех международных конференциях: SPIE Photonics Europe 2010 (Брюссель, Бельгия), The European Conference on Lasers and Electro-Optics (CLEO/Europe) 2011 (Мюнхен, Германия), The 36th European Conference and Exhibition on Optical Communication (ECOC) 2010 (Турин, Италия), четырех российских конференциях: 9-й Всеросийской конференции "Материалы нано- микро-, оптоэлектроники и волоконной оптики: физические свойства и применения" 2010, Всероссийские конференции по волоконной оптике, г.Пермь 2009 и 2011 г, XIV конференции и VI школы молодых ученых «Высокочистые вещества и материалы. Получение, анализ, применение» 2011, Нижний Новгород, а так же на семинарах НЦВО.

Структура и объем диссертации

Диссертация состоит из введения, пяти глав, заключения и списка цитируемой литературы. Работа изложена на 139 страницах машинописного текста, содержит 55 рисунков и 1 таблицу. Список литературы содержит 95 наименований.

Личный вклад автора

Диссертационная работа является результатом трехлетней работы автора в Научном центре волоконной оптики РАН и представляет собой обобщение работ автора, выполненных совместно с сотрудниками НЦВО РАН (Москва, Россия), ИХВВ РАН (Н.-Новгород, Россия), ФИАН (Москва, Россия) и Xlim (Лимож, Франция). Коллективный характер экспериментальных и теоретических работ обусловил публикацию полученных результатов в соавторстве с коллегами. Все основные результаты, представленные в диссертации, получены автором лично или при его непосредственном участии. Работы, посвященные разработке модели брэгговского световода, были выполнены под непосредственным руководством Ю.А. Успенского.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность данной работы, определены ее цели и защищаемые положения, показана научная новизна и практическая значимость полученных результатов, приведены сведения об их апробации и публикации.

В первой главе представлен обзор литературы. Обсуждается механизм локализации света в сердцевине ФЗЗ-световодов. Указано, что характерной чертой всех световодов на основе фотонной запрещенной зоны является существование в спектре пропускания набора областей, поддерживающих распространение света (запрещенные зоны), а также областей, в пределах которых распространение света по сердцевине невозможно (разрешенные зоны). Для конкретной структуры Ф33световода положение запрещенных и разрешенных зон может быть достаточно точно предсказано с помощью диаграммы фотонных состояний. В то же время, уровень оптических потерь в прямом и изогнутом световоде может быть достоверно оценен лишь посредством численных методов. Отдельным вопросом при изучении ФЗЗсветоводов является вопрос их «одномодовости». Способность Ф33-световодов поддерживать распространение несколько типов мод, уровень потерь которых различен, приводит к понятию «асимптотической одномодовости» таких структур, когда за счет соответствующего подбора параметров световода оптические потери высших мод могут быть сделаны много большими потерь фундаментальной моды. Также в первой главе рассмотрены основные типы ФЗЗ-световодов и указаны последние достижения в области создания световодов с большим полем моды, действующих как на основе принципа полного внутреннего отражения, так и на основе фотонной запрещенной зоны.

Вторая глава диссертации посвящена исследованию влияния параметров брэгговского световода (параметров оболочки и сердцевины), а также его изгиба, на величину оптических потерь и «одномодовость».

В главе представлена упрощенная модель брэгговского световода, в которой рассмотрен наиболее простой и, в то же время, наиболее распространенный случай слабоконтрастного брэгговского световода, толщины слоев отражающей оболочки которого адаптированы на максимальное ограничение фундаментальной моды в сердцевине (случай «четвертьволновых» толщин). Поле в световоде представлено в виде суперпозиции плоских волн, распространяющихся под определенным углом к оси световода, а задача расчета оптических потерь сведена к вычислению коэффициента пропускания плоского многослойного зеркала. Оценка применимости полученных выражений сделана посредством сравнения спектров потерь, экспериментально, с расчетными спектрами ПЯТИ полученных брэгговских световодов, обладающих существенно различными параметрами (количеством и показателем преломления оптически плотных слоев, диаметром и показателем

преломления сердцевины). Хорошее соответствие расчетных и экспериментальных данных при рассмотрении как случая прямого брэгговского световода, так и случая световода, намотанного на катушку фиксированного радиуса, было получено в области длин волн, для работы в которой оптимизировались эти световоды. Анализ полученных выражений, а также экспериментальных данных, позволил установить взаимосвязь параметров световедущей структуры с уровнем потерь на вытекание, а так же с чувствительностью световода к изгибам.

Численное моделирование структуры брэгговского световода и исследование вопроса его одномодовости показали, что высокая степень одномодовости (более двух порядков) может быть достигнута в световодах с показателем преломления (ПП) сердцевины равным показателю преломления оптически менее плотных слоев брэгговского зеркала. В то же время, требование равенства показателей преломления сердцевины и слоев с низким ПП становится все более жестким при увеличении диаметра сердцевины, что на практике, в силу неконтролируемых отклонений при изготовлении профиля, заданного моделью, не позволяет реализовывать световоды с диаметром сердцевины 20 рабочих длин волн и более. Кроме того, в этом случае изгиб световода так же серьезно ухудшает одномодовость. В итоге реализация световодов с большим полем моды сопряжена со сложностью устранения мод высшего порядка.

Третья глава диссертации посвящена разработке методов дополнительного подавления мод высшего порядка в брэгговских световодах с большим полем моды. В основе рассмотренных методов лежит различие пространственного распределения полей фундаментальной и высших мод.

В первом случае рассмотрена конструкция активного брэгговского световода, которого легирована чтобы обеспечить сердцевина так, усиление ЛИШЬ фундаментальной моды. Путем численного моделирования установлено, что легирование 70% области сердцевины способствует генерации излучения в прямого фундаментальной моде В случае световода, однако оказывается недостаточным, чтобы устранить усиление первой высшей моды LP₁₁ при изгибе световода до приемлемых для эксплуатации радиусов изгиба (рисунок 1). Легирование же 40% сердцевины гарантирует усиление лишь фундаментальной моды даже при радиусах изгиба менее 10 см.

Рисунок 1. Зависимость эффективности усиления для легирования 40 (заполненные точки) и 70% (пустые точки) области сердцевины от радиуса изгиба волокна

На основе проведенных расчетов реализован брэгговский световод, центральная часть которого (40% от общего диаметра сердцевины) легирована ионами иттербия. Профиль показателя преломления световода приведен на рисунке 2. Диаметр сердцевины составил 40 мкм, диаметр оболочки – 125 мкм, диаметр поля моды - 26 мкм. Действие световода протестировано в схеме непрерывного лазера. Одномодовое излучение на выходе (M²=1.12) получено, как при использовании прямого, так и изогнутого (вплоть до радиуса 7.5 см) световода (рисунок 3).

Рисунок 2. Профиль показателя преломления брэгговского световода с частичным легированием области сердцевины

Рисунок 3. Зависимость дифференциальной эффективности усиления от обратной величины радиуса изгиба, измеренная в световоде с частичным легированием сердцевины, на вставках показано распределение ближнего поля

Второй метод подавления мод высшего порядка основан на идее создания мироструктурированной сердцевины световода, что обеспечивает подавление первой высшей моды LP₁₁, обладающей наименьшими потерями среди высших мод (рисунок 4). Принцип действия микроструктуры можно описать следующим образом. Внесение анизотропии (за счет введения в сердцевину двух боратных стержней) позволяет зафиксировать направление вектора электрического поля всех собственных мод сердцевины и одновременно с этим подавить две из четырех возможных собственных мод LP₁₁. Деформация формы оставшихся двух собственных мод LP₁₁ достигается посредством дополнительного введения в области поперечного сечения сердцевины, в которых находятся максимумы полей этих мод, двух стержней, легированных фтором. Подобная конструкция сердцевины существенно искажает распределение интенсивности поля первой высшей моды в сердцевине, изменяя условия ее распространения, и значительно увеличивает ее потери.

Рисунок 4. Распределение электрического поля мод LP_{01} и LP_{11} (слева), а также собственные моды семейства LP_{11} (справа), распространение которых возможно: в случае изотропного световодам (а), при внесении в сердцевину двух боросиликатных стержней (б), и в случае внесения фтор- и боросиликатных стержней (в)

Согласно разработанной модели была реализована заготовка и вытянут световод, площадь поля основной моды которого составила 340 мкм² на длине волны 1064 нм, что соответствует среднему диаметру поля моды 21 мкм (величина, максимальная для маломодовых световодов на основе полного внутреннего отражения, работающих в области 1 мкм). Профиль показателя преломления и распределение поля моды приведены на рисунке 5. Исследование модового состава сердцевины световода показало полное отсутствие высших мод в световоде, имеющем длину более 60 см и изогнутого с радиусом менее 50 см.

Рисунок 5. Профиль показателя преломления заготовки и световода и распределение интенсивности поля в сердцевине брэгговского световода

В четвертой главе показано, что увеличение поперечных размеров структуры брэгговского световода с микроструктурированной сердцевиной, разработанной в предыдущей главе, делает возможным не только устранение мод высшего порядка, но также и подавление одной из поляризационных составляющих фундаментальной моды. Присутствие в сердцевине световода двух боросиликатных стержней, размер которых существенно меньше размеров сердцевины приводит к тому, что напряжения, а, следовательно, и профиль показателя преломления, обусловленный вносимыми напряжениями, распределены неравномерно по сечению сердцевины световода. В результате профиль показателя преломления для разных поляризаций оказывается различным (см. Рис.6), что приводит к локализации медленной поляризации фундаментальной моды на оси световода и, наоборот, уширению быстрой поляризации. Разность в постоянных распространения быстрой и медленной поляризаций позволяет подбирать параметры брэгговского зеркала для максимального отражения медленной поляризации и делокализации быстрой поляризации. Моделирование случая изогнутого световода показало, что быстрая поляризация в этом случае легко искажается и вытекает даже при радиусах изгиба \sim 70 см (рисунок 7), в то время как медленная поляризация эффективно удерживается в сердцевине, не изменяя своей формы.

Рисунок 6. Профиль показателя преломления (a) и расчетное распределение ближнего поля (б) медленной (слева) и быстрой (справа) поляризации основной моды

Рисунок 7. Распределение ближнего поля основной моды медленной (слева) и быстрой (справа) поляризации, рассчитанные посредством программы Comsol для случая изогнутого световода с радиусом изгиба 70 см.

Для реализации конструкции световода был предложен и апробирован новый метод создания заготовки брэгговского световода, заключающийся в комбинации методов MCVD (метод химического осаждения из газовой фазы) и метода жакетирования (rod- in- tube). Использование в качестве материала сердцевины и оптически менее плотных слоев оболочки идентичных кварцевых стекол позволило увеличить точность контроля профиля показателя преломления и сделать процесс создания заготовки максимально воспроизводимым.

Согласно предложенной модели реализован световод с площадью поля моды 870 мкм² для работы на 1064нм, что соответствует световоду со средним диаметром поля моды 33 мкм. Показано, что быстрая поляризация крайне чувствительна к изгибу, и даже малые неконтролируемые механические напряжения приводят к ее деформации. На рисунке 8 продемонстрировано распределение ближнего поля медленной и быстрой поляризации на малом участке длины прямого брэгговского световода с микроструктурированной сердцевиной.

Рисунок 8. Распределение ближнего поля медленной (слева) и быстрой (справа) поляризаций фундаментальной моды, измеренное при возбуждении поляризованным источником на коротком участке длины прямого световода

Установлено, что в световоде длиной более 1,7 м, изогнутом с радиусом ~70 см, возможно распространение лишь одной поляризационной составляющей фундаментальной моды. Подавление быстрой поляризации относительно медленной более чем на 13 дБ было получено в рекордно широком для полностью стеклянных световодов спектральном диапазоне от 1 мкм до 1,4 мкм (рисунок 9). Нижняя граница этого спектрального диапазона обусловлена переходом световода в маломодовый режим работы, а верхняя связана с выравниванием потерь на вытекание обеих поляризаций.

длина волны, нм

Рисунок 9. Спектральное изменение коэффициента экстинкции, измеренное при различных радиусах изгиба световода

В пятой главе проверена возможность использования активных брэгговских световодов в схемах усилителя ультракоротких импульсов. Показано, что использование световодов с частичным легированием сердцевины позволяет получать как высокие энергии в импульсе, так и высокие средние мощности выходного сигнала. В схеме усилителя с объемными элементами получена энергия 3.2 мкДж (после сжатия 1,82 мкДж) при частоте повторения 1МГц и длительности чирпированного импульса 150 псек (после сжатия 540 фсек). В аналогичном световоде с воздушной отражающей оболочкой при использовании той же схемы усилителя достигнута средняя мощность 82 Вт при частоте повторения 35 МГц.

Кроме того, была исследована возможность усиления чирпированных импульсов в полностью волоконной схеме лазера. Сравнение энергий импульсов, полученных в брэгговском световоде с частичным легированием сердцевины и полученных в стандартном маломодовом световоде со ступенчатым профилем показателя преломления, показало возможность увеличения максимальной энергии импульсов приблизительно в 3.5 раза (от 3,3 мкДж в световоде со ступенчатым профилем до 11, 6 мкДж в брэгговском световоде). В заключении приведены основные результаты диссертационной работы:

1. Предложена и экспериментально подтверждена простая аналитическая модель брэгговского световода, которая впервые позволила для случая четвертьволновой толщины отражающих слоев связать оптические потери в прямом и изогнутом брэгговском световоде с радиусом изгиба и параметрами световода (количество и показатель преломления слоев отражающей оболочки, диаметр и показатель преломлениы).

2. Теоретически и экспериментально продемонстрирована возможность подавления мод высшего порядка в активных и пассивных брэгговских световодах, за счет различия в пространственном распределении электрического поля фундаментальной и высших мод:

• Частичное легирование сердцевины световода ионами Yb³⁺. Реализован брэгговский световод с сердцевиной диаметром 40 мкм (площадь поля моды 530 мкм² на рабочей длине волны λ =1.04 мкм), 40% от общего диаметра сердцевины которого легировано ионами Yb³⁺. В режиме лазерной генерации получено одномодовое излучение (M²=1.12), как для случая прямого, так и изогнутого (вплоть до радиуса 7,5 см) световода.

• Микроструктурирование сердцевины брэгговского световода. Внесение боросиликатных и фторсиликатных стержней в сердцевину световода диаметром 40 мкм (площадь поля фундаментальной моды 340 мкм² на рабочей длине волны λ =1.06 мкм) позволило обеспечить повышенное вытекание высших мод (в первую очередь моды LP₁₁) и получить одномодовое излучение на выходе из пассивного световода длиной более 60 см, изогнутого с радиусом менее 50 см.

3. Предложена конструкция линейно поляризующего брэгговского световода с микроструктурированной сердцевиной диаметром 80 мкм. Реализован «асимптотически одномодовый» световод с рекордной для брэгговских световедущих структур площадью поля моды (870 мкм² на длине волны 1.06 мкм). Изгиб участка световода длиной более 1.7 м с радиусом менее 70 см позволил обеспечить подавление быстрой поляризации более чем на 13 дБ в рекордно широком для полностью стеклянных световодов спектральном диапазоне (от 1.0 до 1.4 мкм).

4. Продемонстрирована возможность применения активного брэгговского световода с большим диаметром поля моды (530 мкм² на длине волны 1.064 мкм) для усиления ультракоротких импульсов (150 пс при возможности сжатия до субпикосекундной длительности) до высоких энергий (3.2 мДж до сжатия), а так же до высоких средних мощностей (82 Вт). Показана возможность использования таких световодов в целиком волоконных схемах лазеров ультракоротких импульсов.

СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ

- J.Limpert; F.Roser; D.N.Schimpf, E.Seise; T.Eidam; S.Hadrich, J.Rothhardt, C.J.Misas, A.Tunnermann, High Repetition Rate Gigawatt Peak Power Fiber Laser Systems: Challenges, Design, and Experiment, IEEE Journal of Selected Topics in Quantum Electronics, 15, 159-169 (2009)
- T.Eidam, J.Rothhardt, F.Stutzki, F.Jansen, S.Hädrich, H.Carstens, C.Jauregui, Limpert J., and A.Tünnermann, Fiber chirped-pulse amplification system emitting 3.8 GW peak power, Opt. Express 19, 255-260 (2011)
- 3. P.Yeh, A.Yariv, Theory of Bragg fiber, Journal Optical Society of America, 68, 1196-1201 (1978).
- 4. В.Н.Мелехин, А.Б.Маненков, Диэлектрические трубы открытые волноводы с малыми оптическими потерями и редким спектром, Электроника больших мощностей, в сб. №6, 161-178 (1967)

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ ОПУБЛИКОВАНЫ В СЛЕДУЮЩИХ РАБОТАХ:

- 1. С.С.Алешкина, М.Е. Лихачев, Ю.А. Успенский, М.М. Бубнов, Простой метод расчета оптических потерь в прямом и изогнутом брэгговском световоде, Фотон-экспрес-"Наука" №б т.78, стр. 27, г.Пермь, 8-9 октября 2009 г.
- С.С. Алешкина, М. Е. Лихачев, Ю. А. Успенский, М. М. Бубнов., Экспериментальное и теоретическое исследования оптических потерь в прямых и в изогнутых брэгговских волоконных световодах, Квантовая электроника, 40, 893-898 (2010)
- D. A. Gaponov, S. Fevrier, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, Management of the highorder mode content in large (40 um) core photonic bandgap Bragg fiber laser, Optics Letters, Vol. 35, No. 13, 2233-2235 (2010)
- S.S.Aleshkina, M.E.Likhachev, A.D.Pryamikov, D.A.Gaponov, A.N.Denisov, S.L.Semjonov, M.M.Bubnov, M.Yu.Salganskii, and A.N.Guryanov, "Large-modearea Bragg fiber with microstructured core for suppression of high-order modes", Proc. SPIE 7714, 771413 (2010): SPIE Photonics Europe'2010, 12 - 16 April 2010, Brussels, Belgium.
- С.С.Алешкина, М.Е.Лихачев, А.Д.Прямиков, Д.А.Гапонов, А.Н.Денисов, С.Л.Семенов, М.М.Бубнов, М.Ю.Салганский, А.Н.Гурьянов, Световоды с большим полем моды на основе брэгговских световодов с микроструктурированной сердцевиной, с сб. трудов 9-й Всеросийской

конференции и элементами молодежной научной школы "Материалы наномикро-, оптоэлектроники и волоконной оптики: физические свойства и применения.", стр.141, Саранск, издательство Мордовского университета, 2010

- S.S. Aleshkina; M.E. Likhachev; A.D. Pryamikov; D.A. Gaponov; A.N. Denisov; M.M. Bubnov; M.Yu. Salganskii; A.Yu. Laptev; A.N. Guryanov; Yu.A Uspenskii; N.L Popov,; S. Février, Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range, Optics Letters, Vol. 36, 3566-3568 (2011)
- S.S. Aleshkina, M.E. Likhachev, A.D. Pryamikov, D.A. Gaponov, A.N. Denisov, M.M. Bubnov, M.Yu. Salganskii, A.N. Guryanov, and S.Février, "Polarizing Very-Large-Mode-Area Bragg Fber", CLEO/Europe-EQEC 2011, CE9.2, 22 - 26 May 2011, Munich, Germany.
- 8. С.С. Алешкина, М.Е Лихачев, А.Д. Прямиков, Д.А. Гапонов, А.Н. Денисов, М.М. Бубнов, М.Ю. Салганский, А.Н. Гурьянов, С. Февриер, Получение и свойства световодов с большим полем моды на основе брэгговских световодов с микроструктурированной сердцевиной, тезисы докладов XIV конференции и VI школы молодых ученых «Высокочистые вещества и материалы. Получение, анализ, применение», стр. 16, г. Нижний Новгород, 30 мая 2 июня 2011 г.
- С.С. Алешкина, М.Е. Лихачев, А.Д. Прямиков, Д.А. Гапонов, А.Н. Денисов, М.Ю. Салганский, А.Ю. Лаптев, С. Февриер, Ю.А.Успенский, Н.Л. Попов, М.М. Бубнов, А.Н. Гурьянов, Одномодовый поляризующий в широком спектральном диапазоне брэгговский световод с большим полем моды, Фотонэкспрес-"Наука" №6 т.94, В5-3, стр. 149, г.Пермь, 12-14 октября 2011.
- D. A. Gaponov, S. Fevrier, P. Roy, L. Daniault, M. Hanna, F. Druon, P. Georges, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, A.N. Guryanov, Amplification of Femtosecond Pulses in Two-Stage Chirped Pulse Amplification System Based on Large Mode Area Photonic Bandgap Fibres, ECOC 2010, Tu.5.D.2, 19 23 September 2010, Turin, Italy.