ФОТОПОТЕМНЕНИЕ ИТТЕРБИЕВЫХ ВОЛОКОННЫХ СВЕТОВОДОВ ПРИ ВОЗДЕЙСТВИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ УФ И ИК ДИАПАЗОНОВ ДЛИН ВОЛН

А.А. Рыбалтовский*, С.С. Алешкина*, М.Е. Лихачев*, М.М. Бубнов*, Е.М. Дианов*, А.А. Умников**, М.В. Яшков**, А.Н. Гурьянов**

* Научный центр волоконной оптики *РАН,* г. Москва, ул. Вавилова, 38 ** Институт химии высокочистых веществ РАН, г. Нижний Новгород, ул. Тропинина, 49

andy@fo.gpi.ru

Введение. Актуальность проблемы.

- Фотопотемнением иттербиевых световодов называется наведение оптических потерь в результате длительного воздействия на них лазерного ИК-излучения накачки с длиной волны диапазона 920–980 нм.
- Фотопотемнение является основным фактором, ограничивающим срок службы волоконных лазеров и усилителей.
- В настоящее время не разработано универсального технологического решения, позволяющего полностью исключить влияние фотопотемнения на выходные характеристики волоконных лазеров, основой которых являются активные световоды.
- Величина эффекта фотопотемнения определяется прежде всего уровнем населенности возбужденного состояния ионов иттербия и поэтому существенно зависит от интенсивности излучения накачки.
- Несмотря на активные исследования в данной области в течение последних 5-6 лет, механизм фотопотемнения остаётся до сих пор невыясненным, а предложенные в литературе модели этого механизма являются дискуссионными и пока ещё недостаточно подтверждены экспериментом.

Световод, легированный Yb₂O₃

до облучения

после облучения

Спектр наведенных потерь

N(Yb)=0.65×10²⁰ cm⁻³

N(Yb)=1.82×10²⁰ cm⁻³

A. Shubin, M. Yashkov, M. Melkumov, S. Smirnov, I. Bufetov, E. Dianov, CLEO/Europe-IQEQ 2007, Munich

Зависимость фотопотемнения от состава стекла

A. Shubin, M. Yashkov, M. Melkumov, S. Smirnov, I. Bufetov, E. Dianov, CLEO/Europe-IQEQ 2007, Munich

Объекты исследований

• Объекты исследований – заготовки и световоды, полученные методом модифицированного химического осаждения из газовой фазы (MCVD):

Типы образцов	С(Al ₂ O ₃), мол. %	С(P ₂ O ₅), мол. %	С(Yb), вес. %	Δn _{core-clad} ×10 ⁻³
A0	1.8	нет	нет	<mark>4.5</mark>
A1	2.5	нет	0.3	5.5
A2	2.3	нет	0.7	5.5
A3	2.3	нет	1.5	7
A4	3.1	нет	4	8
P1	нет	6.5	1.1	6

• Исследования спектров исходного и наведенного поглощения были проведены на образцах поперечных срезов заготовок толщиной 0.2– 1 мм и отрезках волоконных световодов длиной 2–10 см.

Техника эксперимента и экспериментальные установки

- Источники излучения:
 - 1. ArF лазер CL5000 (193 нм)
 - 2. Ar⁺ лазер Spectra Physics 2040E (244 нм)
 - 3. Диодный лазер накачки ЕМ4 (920нм)
- Регистрация спектров:
 - 1. Мини-спектрометры Ocean Optics QE65000, FSD-9
 - 2. Спектроанализатор НР 70950В
 - 3. Спектрофотометр Perkin Elmer Lambda 900
 - 4. Спектрально-измерительная установка на основе ЛОМО МДР-6

Моделирование УФ-спектра пропускания заготовок: выявление полос поглощения с максимумами 5.1 и 6.5 эВ

• В спектре образца заготовки состава Р₂O₅:Yb₂O₃:SiO₂ полоса поглощения 5.1 эВ отсутствует!

• Полоса поглощения с максимумом ~ 6.5 эВ, по-видимому, присутствует как в спектрах заготовок состава Al₂O₃:Yb₂O₃:SiO₂, так и состава P₂O₅:Yb₂O₃:SiO₂.

Спектры пропускания ("pristine") исследованных образцов в УФ и видимом диапазонах длин волн

• Легирование Yb приводит к увеличению поглощения в УФ-диапазоне длин волн на 2-3 порядка.

- Величина поглощения на длине волны ~ 240 нм (5.1 эВ) возрастает с увеличением концентрации Yb.
- В литературе до сих пор нет единого мнения о природе полосы поглощения 5.1 эВ :
 - 1. «Полоса переноса заряда» («charge-transfer band», CT) иона Yb³⁺.
 - 2. Поглощение, соответствующее переходу иона Yb²⁺ из состояния 4f¹⁴ в состояние 4f¹³5d.
 - 3. Поглощение кислородо-дефицитного центра (КДЦ).

Спектры люминесценции заготовок, возбуждаемой лазерным излучением УФ (193, 244 нм) и ИК (920 нм) длинами волн

Полоса, эВ	Центр люминесценции
1.27	Yb ³⁺ [1]
2.3	Yb ²⁺ CT [2], Yb ³⁺ CT→ ² F _{5/2} [3]
2.5	Yb ³⁺ -Yb ³⁺ пара [4]
3.2	Yb ³⁺ CT→ ² F _{7/2} [3], «modified» КДЦ [5]
3.5	Yb ³⁺ CT→ ² F _{7/2} [3]
4.1	Si КДЦ [6]

Квантовая электроника, **34**, № 9, 843 (2004) Физика и химия стекла, **12**, № 2, 222 (1986) J. of Luminescence, **128**, № 11, 1748 (2008) Optics Express, **14**, № 9, 3981 (2006) J. of Non-Crystalline Solids, **353**, 530 (2007)

J. OJ NON-Crystalline Solias, **353**, 530 (2007

J. of Non-Crystalline Solids, 239, 16 (1998)

• При облучении ИК-источником накачки и УФ-источниками в спектре наблюдается характерная для ионов Yb³⁺ люминесценция с максимумом на 975 нм (1.27 эВ).

• Появление в спектре интенсивной полосы 550 нм (2.2 эВ) указывает на процесс конверсии Yb³⁺→Yb²⁺ .

Спектры наведенного поглощения

Идентификация наведенных центров окраски в алюмосиликатном стекле:

1. H. Hosono, H. Kawazoe, Nuclear Inst. and Methods in Phys. Research B, 91, 395-399 (1994)

2. A.N. Trukhin, J. Teteris, A. Fedotov, D.L. Griscom, G. Buscarino, J. of Non-Crystalline Solids, 355, 1066-1074 (2009)

При облучении ИК-источником накачки и УФ-источниками растёт поглощение в видимой части спектра, связанное с наведением AI-OHC центров в сетке стекла!

Модель иттербиевых ионных пар (Yb³⁺-Yb³⁺) в кварцевом стекле

A.V. Kir'yanov, Y.O. Barmenkov, I.L. Martinez, A.S. Kurkov, E.M. Dianov, Optics Express, 14 (9), 3981-3992 (2006)

- Модель иттербиевых ионных пар объясняет происхождение «зелёной» люминесценции с энергией фотона 2.5 эВ, возбуждаемой ИК-излучением накачки с энергией 1.3 эВ.
- Концентрация ионных пар в сетке стекла растет с увеличением концентрации ионов иттербия.
- Одновременное возбуждение двух или более близко расположенных ионных пар может приводить к кооперативному эффекту, эквивалентному по своему воздействию на сетку стекла воздействию квантов УФ-излучения с энергией ≥ 5 эВ. Этот эффект, по-видимому, будет сильнее проявляться в световодах состава Al₂O₃:Yb₂O₃:SiO₂ по сравнению со световодами состава P₂O₅:Yb₂O₃:SiO₂.

Модель иттербиевых димеров (Yb³⁺-Yb³⁺) в кристаллах

«Dimer model clusters embedded in the point charges of lattices: a) isolated two-Yb³⁺-ion model in YAG, b) $(Yb_2O_{14})^{22}$ cluster model in YAG, and c) $(Yb_2O_{10})^{14-}$ cluster model in Y₂O₃.»

«Schematic diagram of (a) single-electron energy structure, the corresponding single-hole energy structure, and (c) a two-hole energy structure of an Yb³⁺ dimer»

T. Ishii, «First-principles calculations for the cooperative transitions of Yb³⁺ dimer clusters in $Y_3Al_5O_{12}$ and Y_2O_3 crystals», J. of Chemical Physics, **122**, 024705 (2005)

Кооперативное поглощение иттербиевым димером кванта с энергией 2.5 эВ, соответствующей удвоенной энергии кванта ИК-люминесценции иона Yb³⁺, может привести к такому же эффекту «переноса заряда» («charge-transfer», CT), как и при поглощении кванта УФ-излучения (с энергией ≥ 5 эВ).

Модель процесса наведения центров окраски в сетке стекла Al₂O₃:Yb₂O₃:SiO₂ при воздействии ИК и УФ излучения

Процесс наведения центров окраски в сетке стекла активных световодов и связанного с ними поглощения в видимой части спектра при воздействии ИК-излучения накачки происходит в результате кооперативного эффекта, связанного с одновременным возбуждением двух или более ионных пар Yb³⁺–Yb³⁺ и последующей передачей энергии возбуждения иттербиевым центрам, с которыми связана полоса поглощения 5.1 эВ.

Основные результаты работы

- Синтезированы экспериментальные образцы заготовок с различным составом стекла сердцевины: алюмоиттербиевосиликатным (Al₂O₃:Yb₂O₃:SiO₂) и фосфороиттербиевосиликатным (P₂O₅:Yb₂O₃:SiO₂). Была также создана серия заготовок с примерно одинаковой концентрацией Al₂O₃ в сердцевине (~2–3 мол. %), но при этом различающихся по содержанию Yb (0.3–4 вес. %).
- Показано, что возбуждение УФ-излучением с длинами волн 193 и 244 нм приводит к наведению в спектре широкой полосы поглощения с максимумом ~ 500 нм такой же по форме, как и при облучении на длине волны накачки 920 нм. Кроме того, во время облучения образцов заготовки на длинах волн 193 и 244 нм зарегистрирована ИК-люминесценция (975 нм), связанная с возбуждением ионов Yb³⁺, а также видимая (максимум ~ 550 нм) люминесценция, связанная с восстановлением части ионов Yb³⁺ до состояния Yb²⁺.
- На основе полученных результатов предложена феноменологическая модель эффекта фотопотемнения, согласно которой процесс наведения центров окраски в сетке стекла и связанного с ними поглощения в видимой части спектра происходит в два этапа: сначала под действием излучения накачки с энергией ~ 1.3 эВ происходит одновременное возбуждение пар ионов Yb³⁺, каждая из которых имеет суммарную энергию 2.54 эВ; затем за счет поглощения энергии соседних ионных пар происходит возбуждение иттербиевых центров, с которыми связаны полосы 5.1 и 6.7 эВ. Поскольку ионные пары являются, по-видимому, частью этих возбужденных центров, то релаксация из возбужденного состояния сопровождается видимой и ИК-люминесценцией ионов иттербия, а также перестройкой связей ближайшего окружения центра – в частности, появлением в сетке стекла ионов Yb²⁺ и центров немостикового кислорода (NBOHC). Наведение этих центров и соответствующих им полос поглощения в видимой части спектра приводит к фотопотемнению иттербиевых световодов при длительном воздействии ИК-излучения накачки.

Наш коллектив благодарит сотрудников НЦВО РАН:

М.А. Мелькумова, А.В. Шубина, В.Г. Плотниченко, В.О. Назарьянца и О.И. Медведкова за помощь в подготовке и проведении экспериментов, полезные дискуссии и дружескую поддержку.

Основные вопросы для будущих исследований

- Модели иттербиевых центров и модели иттербиевых «ионных пар» («димеров», «нано-кластеров») в кварцевом стекле. Какими связями окружены ионы иттербия: Yb-O-Si, Yb-O-Al, Yb-O-P? Каким образом связаны ионы иттербия в стекле друг с другом: Yb-O-Yb, Yb-Yb (по типу КДЦ) или Yb-O-X-O-Yb (где X=Si, Al, P)?
- Объяснение спектров УФ-поглощения в легированном иттербием кварцевом стекле: с поглощением каких иттербиевых центров связаны полосы 5.1 эВ и 6.5 эВ и почему полоса 5.1 эВ отсутствует в спектре поглощения образцов состава P₂O₅:Yb₂O₃:SiO₂, а полоса 6.5 эВ наблюдается в спектрах образцов составов Al₂O₃:SiO₂ и P₂O₅:Yb₂O₃:SiO₂?
- Объяснение спектров люминесценции в легированном иттербием кварцевом стекле, возбуждаемой ИК-излучением накачки либо УФ-излучением. Почему при возбуждении люминесценции накачкой с длиной волны 920 нм в спектре не наблюдается полос в диапазоне длин волн короче 400 нм? Может ли действительно происходить в сетке стекла поглощение «зеленой» люминесценции от одной «ионной пары» соседней «ионной парой»? Каким образом происходит в этом случае релаксация возбуждения (излучательно, безызлучательно, с перестройкой окружения ионной пары и т.д.)?
- Экспериментальное доказательство наведения центров Yb²⁺ в сетке стекла после облучения мощным (~ 100 кBт/см²) ИК-излучением или высокоэнергетичным (≥ 5 эВ) УФ-излучением? Какие изменения происходят при этом в ближайшем окружении ионов иттербия? Как эти изменения влияют на макроскопические характеристики стекла например, на показатель преломления? Механизм восстановления трехвалентных ионов Yb³⁺ до двухвалентного состояния Yb²⁺. Какие факторы (температура, присутствие молекулярного водорода или иных примесей в сетке) влияют на скорость наведения центров окраски в сетке легированного иттербием кварцевого стекла при воздействии ИК-излучения накачки или УФ-излучения?

Выбор интенсивности излучения накачки на длине волны 920 нм для облучения образцов иттербиевых заготовок и световодов (приложение к докладу)

Таким образом, населенность возбужденного состояния достигалась ~ 90 %

Описание методики:

М.А. Мелькумов, И.А. Буфетов, К.С. Кравцов, А.В. Шубин, Е.М. Дианов, препринт НЦВО при ИОФ РАН, 2004

«Пороговый» характер эффекта фотопотемнения в иттербиевых световодах

(приложение к докладу)

A. Shubin, M. Yashkov, M. Melkumov, S. Smirnov, I. Bufetov, E. Dianov, CLEO/Europe-IQEQ 2007, Munich

Спектры наведенного поглощения в образце заготовки состава GeO₂:Yb₂O₃:SiO₂ (приложение к докладу)

