ИССЛЕДОВАНИЕ ФИЗИКО-ХИМИЧЕСКИХ ПРОЦЕССОВ ЛЕГИРОВАНИЯ КВАРЦЕВОГО СТЕКЛА ФТОРОМ МЕТОДОМ MCVD

Ероньян М.А

ОАО «НИТИОМ ВНЦ «ГОИ им. С. И. Вавилова», г. С-Петербург

- 1. Abe K. Fluorine doped silica for optical waveguides. 2nd European Conference on Optical Communication, Paris, 1976, p. 59-61.
- Walker K. L., Csencits R., Wood D. Chemistry of fluorine incorporation in the fabrication of optical fibers. - Dig. Techn. Pap. (S. 2) 6 th Top. Meet Opt. Fiber Commun., 1983, p. 36-37.
- 3. Kirchhof J., Kleinert P., Unger S., Funke A. About the fluorine chemistry in MCVD: the influence of fluorine doping on SiO₂ deposition. J. Cryst. Res. Technol, 1986, v. 21, № 11, p. 1437-1444.
- 4. Paul M.C., Sen R., Youngman R.E., Dhar A. Fluorine Incorporation in Silica Glass by the MCVD Process: Study of Fluorine Incorporation Zone, Evaluation of Optical Properties and Structure of the Glass - J. Non-Cryst. Solids. 2008. V. 354. P. 5408.
- Kirchhof J. Termodynemics of fluorine incorporation into silica glass. - J. Non crystalline Solids. 2008, v. 354, N 2-9, p. 540-545.

- Долгов И. И., Иванов Г. А., Чаморовский Ю. К., Яковлев М. Я. Радиационно-стойкие одномодовые оптические волокна с кварцевой сердцевиной. «Фотон-экспресс» 2005, № 6, с. 4-10.
- Андреев А. Г., Ермаков В. С., Крюков И. И., Цибиногина М. К., Дукельский К. В., Ероньян М. А., Петровский Г. Т., Серков М. М. Исследование процессов легирования кварцевого стекла фтором методом модифицированного химического парофазного осаждения. - Физика и химия стекла, 2006, т. 32 № 1, с. 49-55.
- 3. Аксенов В. А., Иванов Г. А., Исаев В. А., Лихачев М. Е Исследование процесса осаждения слоев фторсиликатного стекла методом MCVD при использовании тетрафторида кремния. - Фотон-экспресс 2009, т. 78, № 6, с. 142-143.
- Гурьянов А. Н., Салганский М. Ю., Хопин В. Ф., Косолапов А. Ф., Семенов С. Л. Высокоапертурные световоды на основе кварцевого стекла, легированного фтором. -Неорганические материалы, 2009,т. 45, № 7, с. 887-891.

ИЗМЕНЕНИЕ $\Delta n C ДАВЛЕНИЕМ SiF_4$

легирование кварцевого стекла фтором в MCVD и AVD процессах

ФОРМИРОВАНИЕ ПОРИСТОГО ОБРАЗЦА OVD МЕТОДОМ

ГЕОМЕТРИЯ ПОРИСТОГО ОБРАЗЦА

Усадка пористых образцов SiO₂ после 30 минутной выдержки при 1100°С и разных давлениях SiF₄

СПЕКАНИЕ ОБРАЗЦОВ В АТМОСФЕРЕ SiF_4

Легирование кварцевого стекла фтором

Время фторирования в зоне 1 ≈ 3 x 10⁻³ мин.; Т ≈ 1100°С

Время фторирования в зоне 2 ≈ 5 x 10⁻² мин.; T ≈ 1400°C

ДИФФУЗИЯ ФТОРА В ЧАСТИЦЫ SiO₂

Диаметр частиц: — 200 нм, - - - 20 нм

Температурные профили нагрева кварцевой трубки узкозонной (1) и широкозонной (2) горелками

Для транспортировки SiCl₄ использовался газ SiF₄.

Зависимость давления SiOF₂ от температуры при давлении SiF₄ = 1 атм для реакции: SiO₂ + SiF₄ = 2SiOF₂

ИЗМЕНЕНИЕ МАССЫ ОБРАЗЦОВ В АТМОСФЕРЕ SiF₄

выводы

- В газофазных процессах получения фторсиликатного стекла его состав определяется не только давлением фторсодержащих реагентов, но и температурно-временными режимами фторирования тонкодисперстных частиц SiO₂.
 - Степень легирования кварцевого стекла фтором MCVD методом определяется конкуренцией двух процессов: диффузией фтора в частицы SiO₂ и их спеканием.

СПАСИБО ЗА ВНИМАНИЕ